冀教版九下数学第31章随机事件的概率31.3用频率估计概率第1课时频率的稳定性教学设计
doc
2022-03-03 10:00:11
5页
频率的稳定性一、学生知识状况分析学生的知识技能基础:学生在小学已经体验过事件发生的等可能性及游戏规则的公平性,会求简单事件发生的可能性,对一些游戏的公平性能初步地作出自己的评判。学生已接触了不确定事件,了解了不确定事件发生的可能性有大有小,学生具备了进一步探索频率的稳定性及频率与概率的关系的能力。学生活动经验基础:在相关知识的学习过程中,学生已经感受到了数据收集和处理的必要性和作用,获得了从事统计活动所必须的一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,并对“做数学”有相当的兴趣和积极性,具备了一定的合作与交流的能力。 二、教学任务分析教科书基于学生对大量重复试验事件发生频率的认识,提出了本课的具体学习任务:使学生经历“猜测—实验和收集实验数据—分析试验结果—验证猜测”的过程,探索大量重复试验中不确定事件发生的频率会稳定在一个常数附近。频率、概率是新课程标准第三学段“统计与概率”中的两个重要概念。通过这部分内容的学习可以帮助学生,进一步理解试验频率和理论概率的辨证关系,同时亦为学生体会概率和统计之间的联系打下基础。让学生经历数据收集、整理与表示、数据分析以及做出推断的全过程,发展学生的统计意识,同时也应力图在学习中逐步达成学生的有关情感态度目标。为此,本节课设计了以下目标:教学目标:1.知识与技能: 通过试验让学生理解当试验次数较大时,试验频率稳定在某一常数附近,并据此能估计出某一事件发生的频率。2.过程与方法: 在活动中进一步发展学生合作交流的意识与能力,发展学生的辩证思维能力。3.情感与态度:通过对实际问题的分析,培养使用数学的良好意识,激发学习兴趣,体验数学的应用价值;进一步体会“数学就在我们身边”,发展学生的应用数学的能力教学重点:通过试验让学生理解当试验次数较大时,实验的频率具有稳定性,并据此能初步估计出某一事件发生的可能性大小。教学难点:大量重复试验得到频率的稳定值的分析.学习方式:学生在教师指导下进行“猜想→实验→分析→交流→发现→应用”的一系列活动,积极思考,独立探索,自己发现并掌握相应的规律。 教学方式:通过具体的现实情境,从学生已有的生活经验出发,通过“猜想→实验→分析→交流→发现→应用”,经历自主探索、分组实验、合作交流等活动形式,以学生为主体,教师创设和谐,愉悦的环境,辅以适当的引导。同时利用计算机演示教学内容,提高教学的交互性与直观性,打破教学常规,提高课堂效率。 三、教学过程分析
本节课设计了七个教学环节:课前准备;创设情境,激发兴趣;分组试验,获取数据;合作交流,探究新知;巩固训练,发展思维;归纳小结;布置作业。第一环节 课前准备以2人合作小组为单位准备图钉。 第二环节 创设情境,激发兴趣活动内容:教师首先设计一个情景对话:以小明和小丽玩抛图钉游戏为背景展开交流,引出钉尖朝上和钉尖朝下的可能性不同的猜测,进而产生通过试验验证的想法。活动目的:培养学生猜测游戏结果的能力,并从中初步体会试验结果可能性有可能不同。让学生体会猜测结果,这是很重要的一步,我们所学到的很多知识,都是先猜测,再经过多次的试验得出来的。而且由此引出猜测是需通过大量的试验来验证。这就是我们本节课要来研究的问题。第三环节 分组试验,获取数据活动内容:参照教材提供的任意掷一枚图钉,出现钉尖朝上和钉尖朝下两种结果,让同学猜想钉尖朝上和钉尖朝下的可能性是否相同的情境,让学生来做做试验。请同学们拿出准备好的图钉:(1) 两人一组做20次掷图钉游戏,并将数据记录在下表中:试验总次数钉尖朝上次数钉尖朝下次数钉尖朝上频率(钉尖朝上次数/试验总次数)钉尖朝下频率(钉尖朝下次数/试验总次数)介绍频率定义:在n次重复试验中,不确定事件A发生了m次,则比值 称为事件发生的频率。(2)累计全班同学的试验结果,并将试验数据汇总填入下表:试验总次数n 204080120160200240280320360400钉尖朝上次数m 钉尖朝上频率m/n 活动目的:通过分组试验让学生体验不确定事件发生的可能性的发现过程,验证之前的猜想.当试验的次数较少时,规律不明显,甚至与开始的猜测有矛盾,让学生动脑得出造成这种结果的原因是试验的次数不够,培养学生发现问题、解决问题的能力。从而使学生自发的把全班试验的结果都统计出来,学会进行试验和收集试验数据。分组试验也可以培养学生的合作精神和探索意识,激发学生形
成由大胆猜想到验证猜想最后总结规律的数学思考过程. 第四环节 操作交流,探究新知 活动内容:(1)请同学们根据已填的表格,完成下面的折线统计图 (2)小明共做了400次掷图钉游戏,并记录了游戏的结果绘制了下面的折线统计图,观察图像,钉尖朝上的频率的变化有什么规律?结论:在试验次数很大时,钉尖朝上的频率都会在一个常数附近摆动,即钉尖朝上的频率具有稳定性 活动目的:通过绘制折线统计图的过程,使学生进一步对数据进行处理,观察形象直观的统计图进而得出结论,突出本节课的重点.学生分组讨论议一议的两个问题,进一步加深对频率稳定性的认识,初步体会用频率可以估计事件发生的可能性的大小.第五环节 巩固训练 发展思维活动内容:问题1、某射击运动员在同一条件下进行射击,结果如下表:射击总次数 n1020501002005001000击中靶心次数 m9164188168429861击中靶心频率 m/n(1)完成上表; (2)根据上表画出该运动员击中靶心的频率的折线统计图; (3)观察画出的折线统计图,击中靶心的频率变化有什么规律?问题2:某林业部门要考查某种幼树在一定条件的移植成活率,应采用什么具体做法?在同样条件下,大量地对这种幼树进行移植,并统计成活情况,计算成活的频率.如果随着移植棵数n的越来越大,频率越来越稳定于某个常数,那么这个常数就可以被当作成活率的近似值.(1)下表是统计试验中的部分数据,请补充完整:移植总数(n)成活数(m)成活的频率1050270400750150035007000900084723536966213353203633580730.80________0.871________________0.8900.915________________
14000126280.902(2)由下表可以发现,幼树移植成活的频率在 左右摆动,并且随着移植棵数越来越大,这种规律愈加明显.(3)林业部门种植了该幼树1000棵,估计能成活 _______棵.(4)我们学校需种植这样的树苗500棵来绿化校 园,则至少向林业部门购买约_______棵.问题3.某厂打算生产一种中学生使用的笔袋,但无法确定各种颜色的产量, 于是该文具厂就笔袋的颜色随机调查了5000名中学生,并在调查到1000名、2000名、3000名、4 000名、5 000名时分别计算了各种颜色的频率,绘制折线图如下: (1)随着调查次数的增加,红色的频率如何变化?(2)你能估计调查到10000名同学时,红色的频率是多少吗?(3)若你是该厂的负责人,你将如何安排生产各种颜色的产量?数学理解:抛一个如图所示的瓶盖,盖口向上或盖口向下的可能性是否一样大?怎样才能验证自己结论的正确性?活动目的:设置问题1主要是衔接本节课的探索试验题,使学生形成分析数据、计算数据、绘制表格、归纳总结的数学思维,同时进一步体会频率的稳定性。本题难度不大,适合学生独立完成后展演。问题2幼树移植成活率是实际问题中的一种概率问题,也是反映频率稳定性的典型题.这个实际问题中的移植试验不属于各种结果可能性相等的类型,所以成活率要由频率去估计.先由学生讨论出,幼树移植成活率不属于各种结果可能性相等的类型,所以成活率要由频率去估计.接着计算出上述表格中的空缺(成活的频率),观察表格,根据成活的频率哪一组数所稳定到的那个常数,得出幼树移植成活的频率,进而用这个频率来估计幼苗成活的可能性的大小。问题3设计了一个学生生活中经常使用的笔袋问题,贴近学生生活。给出折线统计图,避免了繁琐的计算和绘图过程,节省了学生答题的时间,提高了课堂教学的效率。本题设置了复式折线统计图的形式,拓展了题型,丰富了本节课的教学内容。本题采用独立思考后抢答的形式进行,有利于活跃课堂气氛,激发学习兴趣。数学理解是考察学生设计试验解决问题的能力,本题与抛图钉问题类似,有利于检验教学效果。第六环节 回忆思考,归纳小结活动内容:1、通过本节课的学习,你了解了哪些知识?2、在本节课的教学活动中,你获得了哪些活动体验?
活动目的:对本节课的知识进行回顾,师生互相交流如何通过试验的方法来确定频率的稳定性,及用频率来估计事件发生的可能性的大小。同时总结活动体验,有利于学生积累活动经验,形成良好的数学思考过程。 第七环节 布置作业