2022人教八下第19章一次函数19.1函数第4课时函数的表示法学案
doc
2022-03-14 12:00:04
2页
函数的表示方法一、教学目标1.总结函数三种表示方法.毛2.了解三种表示方法的优缺点.3.会根据具体情况选择适当方法.4.利用数形结合思想,据具体情况选用适当方法解决问题的能力.二、重点难点:重点:1.认清函数的不同表示方法,知道各自优缺点.2.能按具体情况选用适当方法.难点函数表示方法的应用.三、合作探究Ⅰ.提出问题,创设情境我们在上节课里已经看到或亲自动手用列表格.写式子和画图象的方法表示了一些函数.这三种表示函数的方法分别称为列表法、解析式法和图象法.那么,请同学们思考一下,从前面的例子看,你认为三种表示函数的方法各有什么优缺点?在遇到具体问题时,该如何选择适当的表示方法呢?这就是我们这节课要研究的内容.表示方法全面性准确性直观性形象性列表法×∨∨×解析式法∨∨××图象法××∨∨从所填表中可清楚看到三种表示方法各有优缺点.在遇到实际问题时,就要根据具体情况、具体要求选择适当的表示方法,有时为了全面地认识问题,需要几种方法同时使用.四、精讲精练例:一水库的水位在最近5小时内持续上涨,下表记录了这5小时的水位高度.t/时012345…y/米1010.0510.1010.1510.2010.25…1.由记录表推出这5小时中水位高度y(米)随时间t(时)变化的函数解析式,并画出函数图象.2.据估计这种上涨的情况还会持续2小时,预测再过2小时水位高度将达到多少米?2
解:1.由表中观察到开始水位高10米,以后每隔1小时,水位升高0.05米,这样的规律可以表示为:y=0.05t+10(0≤t≤7)这个函数的图象如下图所示:2.再过2小时的水位高度,就是t=5+2=7时,y=0.05t+10的函数值,从解析式容易算出:y=0.05×7+10=10.35从函数图象也能得出这个值数.2小时后,预计水位高10.35米.就上面的例子中提几个问题大家思考:1.函数自变量t的取值范围:0≤t≤7是如何确定的?2.2小时后的水位高是通过解析式求出的呢,还是从函数图象估算出的好?3.函数的三种表示方法之间是否可以转化?1.从题目中可以看出水库水位在5小时内持续上涨情况,且估计这种上涨情况还会持续2小时,所以自变量t的取值范围取0≤t≤7,超出了这个范围,情况将难以预计.2.2小时后水位高通过解析式求准确,通过图象估算直接、方便.就这个题目来说,2小时后水位高本身就是一种估算,但为了准确而言,我认为还是通过解析式求出较好.3.从这个例子可以看出函数的三种不同表示法可以转化,因为题目中只给出了列表法,而我们通过分析求出解析式并画出了图象,所以我认为可以相互转化.练习:1.用列表法与解析式法表示n边形的内角和m是边数n的函数.2.用解析式与图象法表示等边三角形周长L是边长a的函数.3、甲车速度为20米/秒,乙车速度为25米/秒.现甲车在乙车前面500米,设x秒后两车之间的距离为y米.求y随x(0≤x≤100)变化的函数解析式,并画出函数图象.五、课堂小结通过本节课学习,我们认识了函数的三种不同的表示方法,并归纳总结出三种表示方法的优缺点,学会根据实际情况和具体要求选择适当的表示方法来解决相关问题,进一步知道了函数三种不同表示方法之间可以转化,为下面学习数形结合的函数做好了准备.六.作业P1088、9、102