2022沪科版九下第24章圆24.2圆的基本性质第5课时圆的确定教学设计
doc
2022-03-14 18:00:08
10页
圆的确定课题圆的确定学生状况分析知识技能基础通过本章前面几节课的学习,学生知道经过一点可以画无数条直线,经过两点有且只有一条直线等知识。同时具备了用尺规作“线段垂直平分线”等操作技能,掌握了“线段垂直平分线的性质”。活动经验基础在经过点画直线等知识的学习过程中,学生具备了一定的合作精神和探究能力,具有一定的分类讨论的数学思想方法和类比方法。教学任务分析教材的地位及作用本节课的内容是本章第一节内容的延续,学生已积累了画一个圆的经验,同时为今后进一步学习圆的相关知识奠定了基础,具有承前启后的作用。教学目标知识与技能1.了解不在同一直线上的三个点确定一个圆,以及过不在同一直线上的三个点作圆的方法。2.了解三角形的外接圆、三角形的外心等概念。过程与方法1.经历不在同一直线上的三个点确定一个圆的探索过程,培养学生的探索能力。2.通过探索不在同一直线上的三个点确定一个圆的问题,进一步体会解决数学问题的策略。情感态度与价值观形成解决问题的基本策略,体验解决问题策略的多样性,发展实践能力与创新精神。教学重点与难点重点1.经历不在同一条直线上的三个点确定一个圆的探索过程,并能掌握这个结论。2.掌握过不在同一条直线上的三个点作圆的方法。3.了解三角形的外接圆、三角形的外心等概念。难点经历不在同一条直线上的三个点确定一个圆的探索过程,并能过不在同一条直线上的三个点作圆。教法与学法结合学生的年龄特征,采用启发探究式教学方法,充分发挥学生的主观能动性,让学生在猜想、探究、交流的过程中获取知识,掌握方法。教具与学具圆规、直尺、ppt课件。教步骤教师活动学生活动设计意图10
学过程分析(一)创设情境,引入新课多媒体投影展示问题:一位考古学家在马王堆汉墓挖掘时,发现一圆形瓷器碎片,你能帮助这位考古学家将这个破损的圆形瓷器复原,以便于进行深入的研究吗?思考多媒体投影中问题,尝试如何帮助考古学家复原破损瓷器。根据初中学生的年龄特征,依靠生活背景,引发学生注意,使学生产生好奇心,激发学习的兴趣。课题确定圆的条件教学过程分析步骤教师活动学生活动设计意图(一)创设情境,引入新课1.引导学生思考:帮助考古学家复原瓷器就是要画一个与原瓷器大小一样的圆。这样将生活实际问题转化为数学问题。2.确定圆需要哪些要素呢?3.在瓷器碎片上很难直接找到圆心和半径,引导学生寻找隐藏条件。思考并回答确定圆的两要素:圆心位置,半径大小。进一步明确:找到圆心,确定半径的大小是问题的关键。培养学生将实际生活中的问题抽象为数学问题的能力,并使学生体会到数学来源于生活。(二)回顾旧知,激发探索回顾在之前的学习中我们是如何确定直线:1.过一点可以作几条直线?2.过几点可确定一条直线?3.引导学生思考:既然点可以作为确定直线的条件,那么是否也可以作为确定圆的条件呢?A1.学生动手画过一点的直线,可以画无数条这样的直线。2.学生动手画过一点的直线:AB..得出结论:“学生原有的知识和经验是教学活动的起点”通过复习确定直线的方法,启发学生用类比的方法探索确定圆的条件。10
过两个已知点可以确定一条直线。(三)合作交流,合作探究类比确定直线的方法,用点作为确定圆条件:1.探索一:(1)经过一个已知点A能确定一个圆吗?(2)这时圆心和半径都是确定的吗?学生动手画过一点的圆,并小组讨论交流。A得出结论:经过一个已知点能作无数个圆。(圆心、半径均不确定)让学生动手实践,充分交流,通过探究、讨论、交流得到过一个已知点可以作无数多个圆课题确定圆的条件教步骤教师活动学生活动设计意图10
学过程分析(三)合作交流,合作探究2.探索二:(1)经过两个已知点A,B能确定一个圆吗?(2)如何确定圆心才能使圆心到两个点的距离相等?(3)这时圆心和半径都是确定的吗?3.探索三:(1)经过三个已知点A,B,C能确定一个圆吗?(2)如何确定圆心才能使圆心到三个点的距离相等?能否受到上一个探究的启发呢?(3)这时圆心和半径都是确定的吗?学生动手画过两个点的圆,并小组讨论交流。●A●B●O●O●O●O得出结论:经过两个已知点能作无数个圆。(圆心在两点所连线段的垂直平分线上,半径不确定)学生动手画过三个点的圆,并小组讨论交流。AONMFEBC大部分同学的作法:作法:1.作线段AB、BC的垂直平分线,其交点O即为圆心。2.以点O为圆心,OC长为半径作圆。则⊙O即为所求。也有小部分同学有不同的结论:ABC重视学生的课堂参与。让学生在活动中自主探究以及与同伴交流,有条理的进行思考和表达思考的过程,获得分析问题和解决问题的能力。苏霍姆林斯基说过:“应该让我们的学生在每一节课上都感到热烈的、沸腾的、多姿多彩的精神生活。”通过作过三个点圆这一活动,让学生真正“动”、“活”起来,使学生的学习热情高涨,并通过小组讨论交流得出两种不同的作图,使学生初步体会分类讨论的数学思想方法。10
得出结论:不在同一直线上的三点确定一个圆。课题确定圆的条件10
教学过程分析步骤教师活动学生活动设计意图(四)巩固新知,解决问题1.现在你知道了怎样要将一个如图所示的破损的圆盘复原了吗?ABCO作法:1、在圆弧上任取三点A、B、C。2、作线段AB、BC的垂直平分线,其交点O即为圆心。3、以点O为圆心,OC长为半径作圆。⊙O即为所求。在学生探究得出确定圆的方法后,马上解决实际问题,培养成功感,同时使学生体会到数学知识服务于生活。2.破镜重圆:小明不慎把家里的圆形镜子打碎了,其中四块碎片如图所示,为了配到与原来大小一样的圆形镜子,小明带到商店去的一块碎片应该是()A.第①块B.第②块④③②①C.第③块D.第④块利用所学知识思考并选出正确答案A进一步巩固所学知识。10
(五)动手操作,再探新知介绍几个概念:1.经过三角形各个顶点的圆叫做三角形的外接圆。2.外接圆的圆心叫做三角形的外心.这个三角形叫做圆的内接三角形。思考:1.三角形的外心到三角形各顶点距离有何关系?2.如何画三角形的外接圆?1.根据三角形外接圆的定义可以回答出三角形外心到三个顶点的距离相等。2.通过画三角形两边的中垂线的得到交点即为圆心,进而确定半径画出外接圆。培养学生独立思考,解决问题的能力。课题确定圆的条件教学过程分析步骤教师活动学生活动设计意图(五)动手操作,再探新知让学生画出锐角三角形、直角三角形、钝角三角形的外接圆并讨论交流它们外心的位置。学生动手画三类三角形的外接圆,并小组讨论交流外心位置。归纳总结:锐角三角形的外心位于三角形内。直角三角形的外心位于直角三角形斜边中点。钝角三角形的外心位于三角形外。巩固确定外接圆的方法并使学生进一步体会分类讨论的数学思想方法。10
(六)自主评价,反馈提高利用所学知识解答:1、判断:(1)经过三点一定可以作圆。()(2)三角形的外心就是这个三角形两边垂直平分线的交点。()(3)三角形的外心到三边的距离相等。()(4)等腰三角形的外心一定在三角形内。()2、下列命题不正确的是()A.过一点有无数个圆。B.过两点有无数个圆。C.弦是圆的一部分。D.过同一直线上三点不能画圆。3、三角形的外心具有的性质是()A.到三边的距离相等。B.到三个顶点的距离相等。C.外心在三角形的外。D.外心在三角形内。4.如图,△ABC的外接圆的圆心的坐标是。学生思考并回答。通过这几道题目来反馈学生对本节所学知识的掌握程度,落实基础。学生刚刚接触到新的知识需要一个过程,也就是对新知识从不熟悉到熟练的过程,无论是基础的习题,还是变式强化,都要以学生理解透彻为最终目标。10
课题确定圆的条件教学过程分析步骤教师活动学生活动设计意图(七)浅谈体会,感悟反思这节课的学习让你有哪些收获呢?可以分别从知识角度,思想方法角度来谈一谈。学生自由讨论交流归纳总结本节课的收获:1.知识方面:(1)不在同一直线上的三个点确定一个圆。(2)外接圆,外心的概念以及不同三角形外心的位置。2.方法方面:(1)类比的数学方法。(2)分类讨论的数学方法。(3)探究问题的方法及注意事项。通过与同伴交流,学生互相补充进行小结,培养学生合作学习的意识与独立归纳总结的能力。10
(八)课后探究,提升能力布置课后作业:课后探究记录卡问题:平面上的四个点能不能确定一个圆?探索过程:验证过程:收获与发现:根据维果茨基的最近发展区理论,教学应适应最近发展区,走在发展的前面并最终跨越最近发展区而达到新的发展水平。本节的课后作业就是将课内的探究延伸至课外,进一步发展学生探究问题解决问题的能力。10