2022春八年级数学下册第十七章勾股定理达标检测题(新人教版)
doc
2022-03-16 12:00:03
10页
第十七章达标检测卷一、选择题(每题3分,共30分)1.下列各组数中,是勾股数的是( )A.1.5,2,2.5B.1,2,5C.,,D.5,12,132.【教材P26练习T2变式】在平面直角坐标系中,点P(3,4)到原点的距离是( )A.3B.4C.5D.±53.下列命题中,其逆命题成立的是( )A.对顶角相等B.等边三角形是等腰三角形C.如果a>0,b>0,那么ab>0D.如果三角形的三边长a,b,c(其中a<c,b<c)满足a2+b2=c2,那么这个三角形是直角三角形4.如图,数轴上点A表示的数是0,点B表示的数是1,BC⊥AB,垂足为B,且BC=1.以点A为圆心,AC的长为半径画弧,与数轴交于点D,则点D表示的数为( )A.1.4B.C.D.25.在△ABC中,a,b,c分别是∠A,∠B,∠C所对的边.下列条件中,不能得出△ABC是直角三角形的是( )A.b2=a2-c2B.∠A:∠B:∠C=3:4:5C.∠C=∠A-∠BD.a:b:c=1::6.如图,在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于点D,E是垂足,连接CD.若BD=1,则AC的长是( )10
A.2B.2C.4D.47.若△ABC的三边长a,b,c满足(a-b)2+|a2+b2-c2|=0,则△ABC的形状是( )A.等腰三角形B.直角三角形C.等腰直角三角形D.无法确定8.如图为某楼梯示意图,测得楼梯长为5m,高为3m.计划在楼梯表面铺地毯,则地毯长度至少需要( )A.5mB.7mC.8mD.12m9.如图,长方体的底面邻边长分别是5cm和7cm,高为20cm,如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B(点B为棱的中点),那么所用细线最短为( )A.20cmB.24cmC.26cmD.28cm10.如图①所示的是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到如图②所示的“数学风车”,则这个风车的外围周长是( )A.36B.76C.66D.1210
二、填空题(每题3分,共24分)11.命题“如果|a|=|b|,那么a2=b2”的逆命题是________________,它是________(填“真”或“假”)命题.12.如图,已知正方形ABCD的面积为8,则对角线BD的长为________.13.如图,OC为∠AOB的平分线,CM⊥OB,OC=5,OM=4,则点C到射线OA的距离为________.14.公元3世纪初,中国古代数学家赵爽注释《周髀算经》时,创造了“赵爽弦图”.如图,设勾a=6,弦c=10,则小正方形ABCD的面积是________.15.已知直角三角形的两边长分别为3和4,则此三角形的周长为______________.16.如图,在平面直角坐标系中,将长方形AOCD沿直线AE折叠(点E在边DC上),折叠后顶点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为__________.10
17.如图,一扇门的高为2m,宽为1.5m,李师傅有3块木板,尺寸如下:①号木板长3m,宽2.7m;②号木板长2.8m,宽2.8m;③号木板长4m,宽2.4m.可以从这扇门通过的木板是________(填序号).18.如图,AB,BC,CD,DE是四根长度均为5cm的火柴棒,点A,C,E共线.若AC=6cm,CD⊥BC,则线段CE的长度是________.三、解答题(19~22题每题10分,23题12分,24题14分,共66分)19.如图,在△ABC中,CD⊥AB,垂足为D,AB=AC=13,BD=1.(1)求CD的长;(2)求BC的长.20.【教材P39复习题T9变式】如图,在边长为1的小正方形组成的网格图中,△ABC的三个顶点均在格点上,请按要求完成下列问题:(1)求△ABC的周长;10
(2)试判断△ABC的形状.21.【教材P33例2变式】如图,某港口A有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8nmile的速度前进,乙船沿南偏东某个角度以每小时15nmile的速度前进,2h后,甲船到达M岛,乙船到达P岛,两岛相距34nmile,你知道乙船是沿哪个方向航行的吗?22.【教材P39复习题T10拓展】一根直立的旗杆长8m,一阵大风吹过,旗杆从C点处折断,顶部B着地,离杆脚A4m,如图,工人在修复的过程中,发现在折断点C的下面1.25m的D处,有一明显刮痕.如果旗杆从D10
处折断,则杆脚周围多大范围内有被砸中的危险?23.在△ABC中,BC=a,AC=b,AB=c,如图①,若∠C=90°,则有a2+b2=c2;若△ABC为锐角三角形,小明猜想:a2+b2>c2.理由如下:如图②,过点A作AD⊥CB于点D,设CD=x.在Rt△ADC中,AD2=b2-x2;在Rt△ADB中,AD2=c2-(a-x)2,∴b2-x2=c2-(a-x)2,即a2+b2=c2+2ax.∵a>0,x>0,∴2ax>0.∴a2+b2>c2.∴当△ABC为锐角三角形时,a2+b2>c2.∴小明的猜想是正确的.请你猜想,当△ABC为钝角三角形时,如图③,a2+b2与c2的大小关系,并证明你猜想的结论.24.已知:△ABC是等腰直角三角形,动点P在斜边AB所在的直线上,以PC为直角边作等腰直角三角形PCQ,其中∠PCQ=90°,探究并解决下列问题:(1)如图①,若点P在线段AB上,且AC=1+,PA=,则:10
①线段PB=________,PC=________;②猜想:PA2,PB2,PQ2三者之间的数量关系为____________________.(2)如图②,当点P在线段AB的延长线上时,(1)②中所猜想的结论仍然成立,请你利用图②给出证明过程.10
答案一、1.D 2.C 3.D 4.B 5.B 6.A7.C 8.B 9.C10.B 点拨:依题意,可知“数学风车”中的四个大直角三角形的斜边长为=13.所以这个风车的外围周长是(13+6)×4=76.二、11.如果a2=b2,那么|a|=|b|;真12.4 13.3 14.4 15.12或7+16.(10,3) 17.③18.18.8cm 点拨:由题意知AB=BC=CD=DE=5cm,AC=6cm.如图,过点B作BM⊥AC于点M,过点D作DN⊥CE于点N,则∠BMC=∠CND=90°,AM=CM=AC=×6=3(cm),CN=EN.∵CD⊥BC,∴∠BCD=90°.∴∠BCM+∠CBM=∠BCM+∠DCN=90°.∴∠CBM=∠DCN.在△BCM和△CDN中,∴△BCM≌△CDN(AAS).∴BM=CN.在Rt△BCM中,∵BC=5cm,CM=3cm,∴BM===4(cm).∴CN=4cm.∴CE=2CN=2×4=8(cm).三、 19.解:(1)∵AB=13,BD=1,∴AD=13-1=12.在Rt△ACD中,CD===5.(2)在Rt△BCD中,BC===.20.解:(1)∵AB==,AC==2,BC==5,10
∴AB+AC+BC=+2+5=3+5,即△ABC的周长为3+5.(2)∵AB2+AC2=()2+(2)2=25,BC2=52=25,∴AB2+AC2=BC2.∴△ABC是直角三角形.21.解:由题意知,AM=8×2=16(nmile),AP=15×2=30(nmile).∵两岛相距34nmile,∴MP=34nmile.∵162+302=342,∴AM2+AP2=MP2.∴∠MAP=90°.又∵∠NAM=60°,∴∠PAS=30°.∴乙船是沿南偏东30°方向航行的.22.解:在Rt△ABC中,AB=4m,设BC=xm,则AC=(8-x)m.由勾股定理得BC2=AC2+AB2,即x2=(8-x)2+42,解得x=5.故BC=5m,AC=3m.如果旗杆从D处折断,设顶部的着地点为E,则DE=BC+CD=5+1.25=6.25(m),AD=AC-CD=3-1.25=1.75(m).在Rt△ADE中,由勾股定理得AE===6(m).∴杆脚周围6m范围内有被砸中的危险.23.解:当△ABC为钝角三角形时,a2+b2与c2的大小关系为a2+b2<c2.证明:如图,过点A作AD⊥BC,交BC的延长线于点D.设CD=y.10
在Rt△ADC中,由勾股定理得AD2=AC2-DC2=b2-y2;在Rt△ADB中,由勾股定理得AD2=AB2-BD2=c2-(a+y)2.∴b2-y2=c2-(a+y)2,整理,得a2+b2=c2-2ay.∵a>0,y>0,∴2ay>0.∴a2+b2=c2-2ay<c2.∴当△ABC为钝角三角形时,a2+b2<c2.24.解:(1)①;2②PA2+PB2=PQ2(2)证明:如图,过点C作CD⊥AB于点D.∵△ACB为等腰直角三角形,CD⊥AB,∴CD=AD=DB.∵PA2=(AD+PD)2=(DC+PD)2=DC2+2DC·PD+PD2,PB2=(PD-BD)2=(PD-DC)2=DC2-2DC·PD+PD2,∴PA2+PB2=2DC2+2PD2.∵在Rt△PCD中,由勾股定理,得PC2=DC2+PD2,∴PA2+PB2=2PC2.∵△CPQ为等腰直角三角形,∴2PC2=PQ2.∴PA2+PB2=PQ2.10