当前位置: 首页 > 初中 > 数学 > 2022华东师大版八下第17章函数及其图象17.2函数的图象第1课时平面直角坐标系教案

2022华东师大版八下第17章函数及其图象17.2函数的图象第1课时平面直角坐标系教案

doc 2022-03-19 17:00:10 2页
17.2.1平面直角坐标系课题平面直角坐标系教学目标知识目标:1.理解平面直角坐标系的有关概念,并会正确画出平面直角坐标系.2.能根据点的位置确定点的坐标,能根据点的坐标描点.能力目标:联系数轴知识、统计图知识,经历探索平面直角坐标系的概念的过程;通过学生积极动手画图,达到训练的程度,并充分感受直角坐标系上的点和有序实数对是一一对应的含义.情感目标:培养学生细致、认真的学习习惯.通过介绍笛卡儿创立直角坐标系的背景知识,激励学生敢于探索,勇攀科学高峰.重点能在给定的平面直角坐标系中,由点求出坐标,由坐标描出点难点探索象限内点的特征与坐标轴上点的特征,以及它们特征的简单运用.教学过程创设情境:你知道四川大地震的地理位置吗?北京时间2008年5月12日14时28分,在四川汶川县(北纬31.0度,东经103.4度)发生7.8级地震。重庆、山西、陕西、湖北等地有震感。14时35分左右,北京通州发生3.9级地震。问题1例如你去过电影院吗?还记得在电影院是怎么找座位的吗?在数学中,我们可以用一对有序实数来确定平面上点的位置.为此,在平面上画两条原点重合、互相垂直且具有相同单位长度的数轴(如图),这就建立了平面直角坐标系(rightangledcoordinatessystem).通常把其中水平的一条数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两数轴的交点O叫做坐标原点.在平面直角坐标系中,任意一点都可以用一对有序实数来表示.例如,图中的点P,从点P分别向x轴和y轴作垂线,垂足分别为M和N.这时,点M在x轴上对应的数为3,称为点P的横坐标;点N在y轴上对应的数为2,称为点P的纵坐标(ordinate).依次写出点P的横坐标和纵坐标,得到一对有序实数(3,2),称为点P的坐标(coordinates).这时点P可记作P(3,2).  在直角坐标系中,两条坐标轴把平面分成如图所示的Ⅰ、Ⅱ、Ⅲ、Ⅳ四个区域,分别称为第一、二、三、四象限.坐标轴上的点不属于任何一个象限.实践应用2 例1在上图中分别描出坐标是(2,3)、(-2,3)、(3,-2)的点Q、S、R,Q(2,3)与P(3,2)是同一点吗?S(-2,3)与R(3,-2)是同一点吗?例2(教材P35)写出图中的点A、B、C、D、E、F的坐标.观察你所写出的这些点的坐标,回答:(1)在四个象限内的点的坐标各有什么特征?(2)两条坐标轴上的点的坐标各有什么特征?检测反馈1.判断下列说法是否正确:(1)(2,3)和(3,2)表示同一点;(2)点(-4,1)与点(4,-1)关于原点对称;(3)坐标轴上的点的横坐标和纵坐标至少有一个为0;(4)第一象限内的点的横坐标与纵坐标均为正数.2.如图是一个围棋棋盘,我们可以用类似于直角坐标系的方法表示各个棋子的位置.例如,图中右下角的一个棋子可以表示为(12,十三).请至少说出图中四个棋子的“位置”.3.填空:(1)点P(5,-3)关于x轴对称点的坐标是 ;(2)点P(3,-5)关于y轴对称点的坐标是   ;(3)点P(-2,-4)关于原点对称点的坐标是  交流反思1.平面直角坐标系的有关概念及画法;2.在直角坐标系中,根据坐标找出点;由点求出坐标的方法;3.在四个象限内的点的坐标特征;两条坐标轴上的点的坐标特征;第一、三象限角平分线上点的坐标特征;第二、四象限角平分线上点的坐标特征;4.分别关于x轴、y轴及原点的对称的两点坐标之间的关系.课后作业课后反思板书设计2

相关推荐