2022华东师大版八下第17章函数及其图象17.5实践与探索第1课时一次函数与二元一次方程组教案
doc
2022-03-19 17:00:16
3页
17.5.1一次函数与二元一次方程组教学目标知识目标:使学生理解二元一次方程组的解是两条直线的交点坐标,并能通过图象法来求二元一次方程组的解;让学生了解到函数是刻画和研究现实世界数量关系的重要数学模型,也是一种重要的数学思想,培养和提高学生在数学学习中的创造和应用函数的能力.能力目标:使学生体会到实际问题中数量之间的相互关系,学会用函数的思想去进行描述、研究其内在联系和变化规律;情感目标:使学生体会到二元一次方程组的解是两条直线的交点坐标,能通过图象法来求二元一次方程组的解.重点能通过图象法来求二元一次方程组的解难点体会到实际问题中数量之间的相互关系,学会用函数的思想去进行描述、研究其内在联系和变化规律教学过程差异个性设计资源创设情境问题学校有一批复印任务,原来由甲复印社承接,按每100页40元计费.现乙复印社表示:若学校先按月付给一定数额的承包费,则可按每100页15元收费.两复印社每月收费情况如下图所示.根据图象回答:(1)乙复印社的每月承包费是多少?(2)当每月复印多少页时,两复印社实际收费相同?(3)如果每月复印页数在1200页左右,那么应选择哪个复印社?实践应用例1小张准备将平时的零用钱节约一些储存起来.他已存有50元,从现在起每个月节存12元.小张的同学小王以前没有存过零用钱,听到小张在存零用钱,表示从小张存款当月起每个月存18元,争取超过小张.请你写出小张和小王存款和月份之间的函数关系,并计算半年以后小王的存款是多少,能否超过小张?至少几个月后小王的存款能超过小张?3
结论我们看到,两个一次函数图象的交点处,自变量和对应的函数值同时满足两个函数的关系式.而两个一次函数的关系式就是方程组中的两个方程,所以交点的坐标就是方程组的解.据此,我们可以利用图象来求某些方程组的解.例2利用图象解方程组解在直角坐标系中画出两条直线,如下图所示.两条直线的交点坐标是(2,-1),所以方程组的解为例3下图表示一艘轮船和一艘快艇沿相同路线从甲港出发到乙港行驶过程中路程随时间变化的图象(分别是正比例函数图象和一次函数图象).根据图象解答下列问题:(1)请分别求出表示轮船和快艇行驶过程的函数解析式(不要求写出自变量的取值范围);(2)轮船和快艇在途中(不包括起点和终点)行驶的速度分别是多少?(3)问快艇出发多长时间赶上轮船?检测反馈2.已知直线y=2x+1和y=3x+b的交点在第三象限,写出常数b可能的两个数值.3.学校准备去白云山春游.甲、乙两家旅行社原价都是每人60元,且都表示对学生优惠.甲旅行社表示:全部8折收费;乙旅行社表示:若人数不超过30人则按9折收费,超过30人按7折收费.(1)设学生人数为x,甲、乙两旅行社实际收取总费用为y1、y2(元),试分别列出y1、y2与x的函数关系式(y23
应分别就人数是否超过30两种情况列出);(2)讨论应选择哪家旅行社较优惠;(3)试在同一直角坐标系内画出(1)题两个函数的图象,并根据图象解释题(2)题讨论的结果.交流反思1.实际问题中数量之间的相互关系,用函数的思想去进行描述、研究其内在联系和变化规律;2.使学生体会到二元一次方程组的解是两条直线的交点坐标,能通过图象法来求二元一次方程组的解.课后作业课后反思板书设计3