2022北师大版七下第5章生活中的轴对称5.3简单的轴对称图形5.3.3线段垂直平分线的性质学案
doc
2022-03-29 09:04:00
4页
线段的垂直平分线的性质学习目标1、探究线段垂直平分线的性质定理及逆定理.2、会用尺规过一点做已知直线的垂线。3、经历探索线段垂直平分线的性质的过程,培养认真探究、积极思考的能力.学习重点1、掌握线段垂直平分线的性质定理及逆定理.2、会用尺规过一点做已知直线的垂线。学习难点线段垂直平分线的性质定理及逆定理的应用学具使用多媒体课件、小黑板、彩粉笔、三角板等学习内容学习活动设计意图一、创设情境独立思考(课前20分钟)1、阅读课本,思考下列问题:(1)线段垂直平分线的性质定理及逆定理是什么?(2)如何用尺规过一点做已知直线的垂线?2、独立思考后我还有以下疑惑:二、答疑解惑我最棒(约8分钟)甲:乙:丙:丁:同伴互助答疑解惑学习活动设计意图三、合作学习探索新知(约15分钟)1、小组合作分析问题2、小组合作答疑解惑3、师生合作解决问题◆[探究1]如下图.木条L与AB钉在一起,L垂直平分AB,P1,P2,P3,…是L上的点,分别量一量点P1,P2,P3,…到A与B的距离,你有什么发现?◆学生活动:4
(1)学生用平面图将上述问题进行转化,先作出线段AB,过AB中点作AB的垂直平分线L,在L上取P1、P2、P3…,连结AP1、AP2、BP1、BP2、CP1、CP2…(2)作好图后,用直尺量出AP1、AP2、BP1、BP2、CP1、CP2…讨论发现什么样的规律.★探究结果:线段垂直平分线上的点与这条线段两个端点的距离相等.即AP1=BP1,AP2=BP2,…◆能用我们已有的知识来证明这个结论吗?学生讨论给出证明.证法一:利用判定两个三角形全等.如下图,在△APC和△BPC中,学习活动设计意图△APC≌△BPCPA=PB.证法二:利用轴对称性质.由于点C是线段AB的中点,将线段AB沿直线L对折,线段PA与PB是重合的,因此它们也是相等的.★线段垂直平分线上的点与这条线段两个端点的距离相等;反过来,与这条线段两个端点距离相等的点都在它的垂直平分线上.所以线段的垂直平分线可以看成是与线段两端点距离相等的所有点的集合.四、归纳总结巩固新知(约15分钟)1、知识点的归纳总结:(1)线段垂直平分线上的点与这条线段两个端点的距离相等;(2)与这条线段两个端点距离相等的点都在它的垂直平分线上.2、运用新知解决问题:(重点例习题的强化训练)◆例1尺规作图:经过已知直线外一点作这条直线的垂线已知:直线AB和AB外一点C求作:AB的垂线,使它经过点C作法:(1)在C相对于AB的另一侧任选点K(2)以C为圆心,CK的长为半径作弧,交AB于D、E两点。4
(3)分别以D、E为圆心,大于的长为半径作弧,两学习活动设计意图弧交于点F。(4)作直线CF。CF就是所求作的垂线。◆五、课堂小测(约5分钟)六、独立作业我能行1、七、课后反思:1、学习目标完成情况反思:2、掌握重点突破难点情况反思:3、错题记录及原因分析:自我评价课上1、本节课我对自己最满意的一件事是:2、本节课我对自己最不满意的一件事是:作业独立完成()求助后独立完成()未及时完成()未完成()五、课堂小测(约5分钟)1、线段垂直平分线上的点与这条线段两个端点的相等.2、与这条线段两个端点相等的点都在它的垂直平分线上.3、尺规作图:经过已知直线外一点作这条直线的垂线已知:求作:C●4
AB∴直线就是所求的垂线.4