2022冀教版七下第6章二元一次方程组6.2二元一次方程组的解法6.2.1用代入法解有一个未知数系数为1的二元一次方程组学案
doc
2022-04-02 11:00:27
2页
用代入法解有一个未知数系数为1的二元一次方程组学习目标:1.会用代入消元法解有一个未知数系数为1的二元一次方程组.2.了解“消元”思想,初步体会数学研究中“化未知为已知”的化归思想.3.让学生经历自主探索过程,化未知为已知,从中获得成功的体验,从而激发学生的学习兴趣.重点:用代入消元法解二元一次方程组.难点:在解题过程中体会“消元”思想和“化未知为已知”的化归思想.学习过程:课前热身:教师引导学生共同回忆上一节课讨论的“买门票”问题,想一想当时是怎么获得二元一次方程组的解的.设他们中有x个成人,y个儿童,我们得到了方程组成人和儿童到底去了多少人呢?在上一节课的“做一做”中,我们通过检验是不是方程x+y=8和方程5x+3y=34的解,从而得知这个解既是x+y=8的解,也是5x+3y=34的解,根据二元一次方程组的解的定义,得出是方程组的解.所以成人和儿童分别去了5人和3人.自主学习:让学生独立思考,然后在学生充分思考的前提下,进行小组讨论,在此基础上由学生代表回答,老师适时地引导与补充,力求通过学生观察、思考与讨论后能得出以下的一些要点.1.列二元一次方程组设有两个未知数:x个成人,y个儿童.列一元一次方程只设了一个未知数:x个成人,儿童去的个数通过去的总人数与去的成人数相比较,得出(8-x)个.因此y应该等于(8-x).而由二元一次方程组的一个方程x+y=8,根据等式的性质可以推出y=8-x.2.发现一元一次方程中5x+3(8-x)=34与方程组中的第二个方程5x+3y=34相类似,只需把5x+3y=34中的“y”用“(8-x)”代替就转化成了一元一次方程.教师引导学生发现了新旧知识之间的联系,便可寻求到解决新问题的方法——即将新知识(二元一次方程组)转化为旧知识(一元一次方程)便可.将中的①变形,得y=8-x③,我们把y=8-x代入方程②,即将②中的y用(8-x)代替,这样就有5x+3(8-x)=34.“二元”化成“一元”.2
解:由①得:.③将③代入②得:.解得:.把代入③得:.所以原方程组的解为:(提醒学生进行检验,即把求出的解代入原方程组,必然使原方程组中的每个方程都同时成立,如不成立,则可知解有问题)归纳总结:教师总结:同学们很善于思考.这就是我们在数学研究中经常用到的“化未知为已知”的化归思想,通过它使问题得到完美解决.请同学们完整地解一下这个二元一次方程组.布置作业:随堂练习教学反思:教师反思:学生反思:2