2022冀教版七下第8章整式的乘法8.3同底数幂的除法8.3.1同底数幂的除法教学设计
doc
2022-04-02 11:00:33
5页
同底数幂的除法教学设计思路“问题是思考的开始”,问题的提出是数学教学中重要的一环,使学生明确学习内容的必要性,才有可能调动学生解决问题的主动性,促进学生认识能力的提高与发展.而对于生产和生活中的实际问题,学生看得见,摸得着,有的还亲身经历过,所以,当教师提出这些问题时,他们一定会跃跃欲试,想学以致用,这样能起到充分调动学习积极性的作用.教学目标知识与技能:1.经历同底数幂的除法运算性质的获得过程,掌握同底数幂的运算性质,会用同底数幂的运算性质进行有关计算,提高学生的运算能力.2.了解零指数幂和负整指数幂的意义,知道零指数幂和负整指数幂规定的合理性.过程与方法:经历探索同底数幂的除法的运算性质的过程,进一步体会幂的意义,发展推理能力,提高语言表达能力.情感态度价值观:感受数学公式的简洁美、和谐美.重点难点重点:准确、熟练地运用法则进行计算.难点:负指数幂的条件及法则的正确运用.教学过程1.创设情境,复习导入前面我们学习了同底数幂的乘法,请同学们回答如下问题,看哪位同学回答得快而且准确.(1)叙述同底数幂的乘法性质.(2)计算:①②③学生活动:学生回答上述问题..(m,n都是正整数)教法说明:通过复习引起学生回忆,巩固同底数幂的乘法性质,同时为本节的学习打下基础.5
2.提出问题,引出新知我国研制的“银河”巨型计算机的运算速度是108次/秒,光计算机(主要由光学运算器、光学存储器和光学控制器组成)的运算速度是108次/秒.光计算机的运算速度是“银河”计算机运算速度的多少倍?怎样计算呢?这就是我们这节课要学习的同底数幂的除法运算.3.导向深入,得出性质做一做(鼓励学生根据幂的意义和除法意义,独立得出结果)按乘方的意义和除法计算:(1)(2)(3)(4)探究:(1)若a≠0,a15÷a5等于什么?(2)通过上面的计算,对同底数幂的除法运算,你发现了什么规律?学生思考,回答师生共同总结:教师把结论写在黑板上.请同学们试着用文字概括这个性质:【公式分析与说明】提出问题:在运算过程当中,除数能否为0?学生回答:不能.(并说明理由)由此得出:同底数幂相除,底数.教师指出在我们所学知识范围内,公式中的m、n为正整数,且m>n,最后综合得出:5
一般地,这就是说,同底数幂相除,底数不变,指数相减.尝试证明:4.揭示规律由此我们规定规律一:任何不等于0的数的0次幂都等于1.一般我们规定规律二:任何不等于0的数的-p(p是正整数)次幂等于这个数的p次幂的倒数.5.尝试反馈,理解新知(补充)例2自从扫描隧道电子显微镜发明后,便诞生了一门新技术一纳米技术.纳米是长度单位,1nm(纳米)等于0.000000001m.请用科学记数法表示0.000000001.分析:绝对值较小的数可以用一个有一位整数的数与105
的负指数幕的乘积的形式来表示.学生活动:学生在练习本上完成例l、例2,由2个学生板演完成之后,由学生判断板演是否正确.教师活动:统计做题正确的人数,同时给予肯定或鼓励.6.反馈练习,巩固知识练习一(1)填空:①②③④(2)计算:①②③④学生活动:第(l)题由学生口答;第(2)题在练习本上完成,然后同桌互阅,教师抽查.练习二下面的计算对不对?如果不对,应怎样改正?(1)(2)(3)(4)学生活动:此练习以学生抢答方式完成,注意训练学生的表述能力,以提高兴趣.总结、扩展我们共同总结这节课的学习内容.学生活动:①同底数幂相除,底数,指数.②由学生谈本书内容体会.教法说明:强调“不变”、“相减”5
.学生谈体会,不仅是对本节知识的再现,同时也培养了学生的口头表达能力和概括总结能力.6.小结本节主要学习内容:同底数幂的除法运算性质.零指数与负整数指数的意义.用科学记数法表示绝对值较小的数的方法.幂的运算与指数运算的关系:(m,n都是正整数);(a≠0,m,n都是正整数),即在底数相同的条件下:幂相乘→指数相加,幂相除→指数相减.注意的地方:在同底数幂的除法性质及零指数幂与负整数指数幂中,千万不能忽略底数a≠0的条件.7.布置作业P78A组3、4B组2、38.板书设计8.3.1同底数幂的除法一、同底数幂的法则二、例题练习例1(补充)例2证明:(学生板演)5