当前位置: 首页 > 初中 > 数学 > 10.2第2课时平行线的判定方法课件(沪科版七下数学)

10.2第2课时平行线的判定方法课件(沪科版七下数学)

ppt 2022-05-01 19:00:15 35页
剩余31页未读,查看更多需下载
10.2平行线的判定第10章相交线、平行线与平移第2课时平行线的判定方法 学习目标1.掌握平行线的三种判定方法,会运用判定方法来判断两条直线是否平行;(重点)2.能够根据平行线的判定方法进行简单的推理. 问题1两条不重合的直线的位置关系有哪几种?问题2怎样的两条直线平行?问题3上节课你学了平行线的哪些内容?相交(包括垂直)和平行两种.在同一平面内,不相交的两条直线平行.2.如果两条直线都与第三条直线平行,那么这两条直线互相平行.1.经过直线外一点,有且只有一条直线与已知直线平行.导入新课回顾与思考 思考根据平行线的定义,如果平面内的两条直线不相交,就可以判断这两条直线平行.但是,由于直线无限延伸,检验它们是否相交有困难,所以难以直接根据两条直线是否平行,那么有没有其他判定方法呢? ●一、放二、靠三、推四、画我们已经学习过用三角尺和直尺画平行线的方法.讲授新课利用同位角判定两条直线平行一 bA21aB(1)这样的画法可以看作是怎样的图形变换?(2)画图过程中,什么角始终保持相等?(3)直线a,b位置关系如何?思考 (4)请将其最初和最终的特殊位置抽象成几何图形:12l2l1AB(5)由上面的操作过程,你能发现判定两直线平行的方法吗? 判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:同位角相等,两直线平行.应用格式:∵∠1=∠2(已知)∴l1∥l2(同位角相等,两直线平行)12l2l1AB总结归纳 实验验证 练习:下图中若∠1=550,∠2=550,直线AB、CD平行吗?为什么?ACEFBD12同位角相等,两直线平行. 变式1:如图,∠1=55º,∠2=125º,直线AB与CD平行吗?为什么?ACEFBD12MN同位角相等,两直线平行. 变式2:如图,直线AB与CD被直线EF所截,∠1=55º,请添加一个条件使得直线AB与直线CD平行.ACEFBD13254∠5=55º 你能说出木工师傅用图中这种角尺的工具画平行线的道理吗?练一练 问题1两条直线被第三条直线所截,同时得到同位角、内错角和同旁内角,由同位角相等可以判定两直线平行,那么,能否利用内错角和同旁内角来判定两直线平行呢?如图,由3=2,可推出a//b吗?如何推出?解:∵1=3(已知),3=2(对顶角相等),1=2.a//b(同位角相等,两直线平行).2ba13利用内错角、同旁内角判定两条直线平行二 判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行.2ba13∵∠3=∠2(已知)∴a∥b(内错角相等,两直线平行)应用格式:总结归纳 问题2如图,如果1+2=180°,你能判定a//b吗?c解:能,∵1+2=180°(已知)1+3=180°(邻补角定义)2=3(同角的补角相等)a//b(同位角相等,两直线平行)2ba13 判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:同旁内角互补,两直线平行.应用格式:2ba13∵∠1+∠2=180°(已知)∴a∥b(内错角相等,两直线平行)总结归纳 ①∵∠2=∠6(已知)∴___∥___()②∵∠3=∠5(已知)∴___∥___()③∵∠4+___=180o(已知)∴___∥___()ABCDABCD∠5ABCDAC14235867BD同位角相等,两直线平行内错角相等,两直线平行同旁内角互补,两直线平行FE典例精析例1:根据条件完成填空. ①∵∠1=_____(已知)∴AB∥CE()②∵∠1+_____=180o(已知)∴CD∥BF()③∵∠1+∠5=180o(已知)∴_____∥_____()ABCE∠2④∵∠4+_____=180o(已知)∴CE∥AB()∠3∠313542CFEADB内错角相等,两直线平行同旁内角互补,两直线平行同旁内角互补,两直线平行同旁内角互补,两直线平行练一练:根据条件完成填空. ∴AB∥MN(内错角相等,两直线平行.)解:∵∠MCA=∠A(已知)又∵∠DEC=∠B(已知)∴AB∥DE(同位角相等,两直线平行.)∴DE∥MN(如果两条直线都和第三条直线平行,那么这两条直线也互相平行.)例2:如图,已知∠MCA=∠A,∠DEC=∠B,那么DE∥MN吗?为什么?AEBCDNM 已知∠3=45°,∠1与∠2互余,试说明?解:∵∠1=∠2(对顶角相等)∠1+∠2=90°(已知)∴∠1=∠2=45°∵∠3=45°(已知)∴∠2=∠3∴AB∥CD(内错角相等,两直线平行)123ABCDAB//CD练一练 做一做内错角相等,两直线平行.同旁内角相等,两直线平行. 做一做同位角相等,两直线平行.内错角相等,两直线平行.同旁内角相等,两直线平行. 思考:在同一平面内,两条直线垂直于同一条直线,这两条直线平行吗?为什么?abcb⊥a,c⊥ab∥c?合作探究猜想:垂直于同一条直线的两条直线平行. 在同一平面内,b⊥a,c⊥a,试说明:b∥c.abc12∵b⊥a,c⊥a(已知)∴b∥c(同位角相等,两直线平行)∴∠1=∠2=90°(垂直的定义)解法1:如图,验证猜想 ∵b⊥a,c⊥a(已知)∴∠1=∠2=90°(垂直定义)∴b∥c(内错角相等,两直线平行)abc12解法2:如图,在同一平面内,b⊥a,c⊥a,试说明:b∥c. ∵b⊥a,c⊥a(已知)∴∠1=∠2=90°(垂直定义)∴∠1+∠2=180°∴b∥c(同旁内角互补,两直线平行)abc12解法3:如图,在同一平面内,b⊥a,c⊥a,试说明:b∥c. 垂直于同一条直线的两条直线平行.几何语言:∵b⊥a,c⊥a(已知)∴b∥c(垂直于同一条直线的两条直线平行.)abc12归纳总结 例3如图,为了说明示意图中的平安大街与长安街是互相平行的,在地图上量得∠1=90°,你能通过度量图中已标出的其他的角来验证这个结论吗?说出你的理由.解:方法1:测出∠3=90°,理由是同位角相等,两直线平行.方法2:测出∠2=90°,理由是同旁内角互补,两直线平行.方法3:测出∠5=90°,理由是内错角相等,两直线平行.方法4:测出∠2,∠3,∠4,∠5中任意一个角为90°,理由是垂直于同一直线的两直线平行.(答案不唯一) 1.如图,可以确定AB∥CE的条件是()A.∠2=∠BB.∠1=∠AC.∠3=∠BD.∠3=∠AC123AEBCD当堂练习 2.如图,已知∠1=30°,∠2或∠3满足条件____________,则a//b.213abc∠2=150°或∠3=30° 3.如图.(1)从∠1=∠4,可以推出∥,理由是.(2)从∠ABC+∠=180°,可以推出AB∥CD,理由是.ABCD12345AB内错角相等,两直线平行CDBCD同旁内角互补,两直线平行 (3)从∠=∠,可以推出AD∥BC,理由是.(4)从∠5=∠,可以推出AB∥CD,理由是.23内错角相等,两直线平行ABC同位角相等,两直线平行ABCD12345 理由:∵AC平分∠DAB(已知)∴∠1=∠2(角平分线定义)又∵∠1=∠3(已知)∴∠2=∠3(等量代换)∴AB∥CD(内错角相等,两直线平行)4.如图,已知∠1=∠3,AC平分∠DAB,你能判断那两条直线平行?请说明理由?23ABCD))1(解:AB∥CD. 1.同位角相等,两直线平行.2.内错角相等,两直线平行.3.同旁内角互补,两直线平行.4.平行于同一直线的两直线平行.5.同一平面内,垂直于同一直线的两直线平行.6.平行线的定义.判定两条直线是否平行的方法有:课堂小结

相关推荐