人教版八(下)数学培优专题02 乘法公式(含答案解析)
doc
2022-06-17 15:00:02
9页
专题02乘法公式阅读与思考乘法公式是多项式相乘得出的既有特殊性、又有实用性的具体结论,在整式的乘除、数值计算、代数式的化简求值、代数式的证明等方面有广泛的应用,学习乘法公式应注意:1.熟悉每个公式的结构特征;2.正用即根据待求式的结构特征,模仿公式进行直接的简单的套用;3.逆用即将公式反过来逆向使用;4.变用即能将公式变换形式使用;5.活用即根据待求式的结构特征,探索规律,创造条件连续综合运用公式.例题与求解【例1】1,2,3,…,98共98个自然数中,能够表示成两个整数的平方差的个数是.(全国初中数字联赛试题)解题思路:因,而的奇偶性相同,故能表示成两个整数的平方差的数,要么为奇数,要么能被4整除.【例2】(1)已知满足等式,则的大小关系是()A.B.C.D.(山西省太原市竞赛试题)(2)已知满足,则的值等于()A.2B.3C.4D.5(河北省竞赛试题)解题思路:对于(1),作差比较的大小,解题的关键是逆用完全平方公式,揭示式子的非负性;对于(2),由条件等式联想到完全平方式,解题的切入点是整体考虑.\n【例3】计算下列各题:(1);(天津市竞赛试题)(2);(“希望杯”邀请赛试题)(3).解题思路:若按部就班运算,显然较繁,能否用乘法公式简化计算过程,关键是对待求式恰当变形,使之符合乘法公式的结构特征.【例4】设,求的值.(西安市竞赛试题)解题思路:由常用公式不能直接求出的结构,必须把表示相关多项式的运算形式,而这些多项式的值由常用公式易求出其结果.【例5】观察:(1)请写出一个具有普遍性的结论,并给出证明;(2)根据(1),计算的结果(用一个最简式子表示).(黄冈市竞赛试题)解题思路:从特殊情况入手,观察找规律.\n【例6】设满足求:(1)的值;(2)的值.(江苏省竞赛试题)解题思路:本题可运用公式解答,要牢记乘法公式,并灵活运用.能力训练A级1.已知是一个多项式的平方,则.(广东省中考试题)2.数能被30以内的两位偶数整除的是.3.已知那么.(天津市竞赛试题)4.若则.5.已知满足则的值为.(河北省竞赛试题)6.若满足则等于.7.等于()A.B.C.D.8.若,则的值是()A.正数B.负数C.非负数D.可正可负9.若则的值是()A.4B.19922C.21992D.41992(“希望杯”邀请赛试题)\n10.某校举行春季运动会时,由若干名同学组成一个8列的长方形队列.如果原队列中增加120人,就能组成一个正方形队列;如果原队列中减少120人,也能组成一个正方形队列.问原长方形队列有多少名同学?(“CASIO”杯全国初中数学竞赛试题)11.设,证明:是37的倍数.(“希望杯”邀请赛试题)12.观察下面各式的规律:写出第2003行和第行的式子,并证明你的结论.\nB级1.展开式中的系数,当1,2,3…时可以写成“杨辉三角”的形式(如下图),借助“杨辉三角”求出的值为.(《学习报》公开赛试题)112113311464115101051…………………3913第2题图2.如图,立方体的每一个面上都有一个自然数,已知相对的两个面上的两数之和都相等,如果13,9,3的对面的数分别为,则的值为.(天津市竞赛试题)3.已知满足等式则.4.一个正整数,若分别加上100与168,则可得两到完全平方数,这个正整数为.(全国初中数学联赛试题)5.已知,则多项式的值为()A.0B.1C.2D.36.把2009表示成两个整数的平方差的形式,则不同的表示法有()A.16种B.14种C.12种D.10种(北京市竞赛试题)7.若正整数满足,则这样的正整数对的个数是()A.1B.2C.3D.4(山东省竞赛试题)8.已知,则的值是()A.3B.9C.27D.81(“希望杯”邀请赛试题)9.满足等式的整数对是否存在?若存在,求出的值;若不存在,说明理由.\n10.数码不同的两位数,将其数码顺序交换后,得到一个新的两位数,这两个两位数的平方差是完全平方数,求所有这样的两位数.(天津市竞赛试题)11.若,且,求证:.12.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”,如因此4,12,20这三个数都是神秘数.(1)28和2012这两个数是神秘数吗?为什么?(2)设两个连续偶数为和(其中取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(取正值)是神秘数吗?为什么?(浙江省中考试题)\n专题02乘法公式例173提示:满足条件的整数是奇数或是4的倍数.例2(1)Bx-y=(+4a+a)+(-8b+16)=+≥0,x≥y.(2)B3个等式相加得:++=0,a=3,b=-1,c=1.a+b+c=3-1+1=3.例3(1)(2)4(3)-5050例4提示:由a+b=1,+=2得ab=-,利用+=(+)(a+b)-ab(+)可分别求得+=,+=,+=,+=,+=.例5(1)设n为自然数,则n(n+1)(n+2)(n+3)+1=(2)由①得,2000×2001×2002×2003+1=.例6(1)设-②,得ab+bc+ac=,∵-3abc=(a+b+c)(-ab-bc-ac),∴abc=()-(a+b+c)(-ab-bc-ac)=×3-×1×(2+)=.(2)将②式两边平方,得∴=4-2=4-2=.A级1.0或62.26,283.24.405.346.07.D8.A9.C\n10.原有136或904名学生.设m,n均为正整数,且m>n,①-②得(m+n)(m-n)=240=.,都是8的倍数,则m,n能被4整除,m+n,m-n均能被4整除.得或,∴或8x=-120=904或8x=-120=136.11.因为a=+-2=(-1)+(-1)=999999999+37×(+38+1),而999999999=9×111111111=9×3×37037037=27×37×1001001=37×(27×1001001).所以37|999999999,且37|37×(+38+1),因此a是37的倍数.12.第2003行式子为:=.第n行式子为:=.证明略B级1.1.0942.76提示:由13+a=9+b=3+c得a-b=-4,b-c=-6,c-a=103.134.1565.D6.C提示:(x+y)(x-y)=2009=7×7×41有6个正因数,分别是1,7,41,49,287和2009,因此对应的方程组为:故(x,y)共有12组不同的表示.7.B8.C9.提示:不存在符合条件的整数对(m,n),因为1954不能被4整除.\n10.设所求两位数为,由已知得=(k为整数),得而得或解得或,即所求两位数为65,5611.设,则由得③②③,得,即或分别与联立解得或12.(1),故28和2012都是神秘数(2)为4的倍数(3)神秘数是4的倍数,但一定不是8的倍数.,故两个连续奇数的平方差不是神秘数