当前位置: 首页 > 高中 > 数学 > 高中数学人教A版必修四第一章1.2.1任意角的三角函数2教学设计

高中数学人教A版必修四第一章1.2.1任意角的三角函数2教学设计

docx 2022-08-19 18:32:03 8页
剩余6页未读,查看更多需下载
任意角的三角函数教学目的:知识目标:1.复习三角函数的定义、定义域与值域、符号、及诱导公式;2.利用三角函数线表示正弦、余弦、正切的三角函数值;3.利用三角函数线比较两个同名三角函数值的大小及表示角的范围。能力目标:掌握用单位圆中的线段表示三角函数值,从而使学生对三角函数的定义域、值域有更深的理解。德育目标:学习转化的思想,培养学生严谨治学、一丝不苟的科学精神;教学重点:正弦、余弦、正切线的概念。教学难点:正弦、余弦、正切线的利用。教学过程:一、复习引入:1.三角函数的定义2.诱导公式\n练习1.D练习2.B练习3.C二、讲解新课:当角的终边上一点的坐标满足时,有三角函数正弦、余弦、正切值的几何表示——三角函数线。1.有向线段:坐标轴是规定了方向的直线,那么与之平行的线段亦可规定方向。规定:与坐标轴方向一致时为正,与坐标方向相反时为负。有向线段:带有方向的线段。2.三角函数线的定义:设任意角的顶点在原点,始边与\n轴非负半轴重合,终边与单位圆相交与点,过作轴的垂线,垂足为;过点作单位圆的切线,它与角的终边或其反向延长线交与点.(Ⅰ)(Ⅱ)(Ⅳ)(Ⅲ)\n由四个图看出:当角的终边不在坐标轴上时,有向线段,于是有,,我们就分别称有向线段为正弦线、余弦线、正切线。说明:(1)三条有向线段的位置:正弦线为的终边与单位圆的交点到轴的垂直线段;余弦线在轴上;正切线在过单位圆与轴正方向的交点的切线上,三条有向线段中两条在单位圆内,一条在单位圆外。(2)三条有向线段的方向:正弦线由垂足指向的终边与单位圆的交点;余弦线由原点指向垂足;正切线由切点指向与的终边的交点。(3)三条有向线段的正负:三条有向线段凡与轴或轴同向的为正值,与轴或轴反向的为负值。\n(4)三条有向线段的书写:有向线段的起点字母在前,终点字母在后面。4.例题分析:例1.作出下列各角的正弦线、余弦线、正切线。(1);(2);(3);(4).解:图略。例2.\n例5.利用单位圆写出符合下列条件的角x的范围.答案:(1);(2);三、巩固与练习:P17面练习四、小结:本节课学习了以下内容:1.三角函数线的定义;2.会画任意角的三角函数线;3.利用单位圆比较三角函数值的大小,求角的范围。五、课后作业:作业4参考资料例1.利用三角函数线比较下列各组数的大小:\n1°与2°与解:如图可知:tantan例2.利用单位圆寻找适合下列条件的0°到360°的角xyoTA210°30°xyoP1P21°sina≥2°tana解:1°2°30°≤a≤150°30°a90°或210°a270°补充:1.利用余弦线比较的大小;\n2.若,则比较、、的大小;3.分别根据下列条件,写出角的取值范围:(1);(2);(3).

相关推荐