当前位置: 首页 > 高中 > 数学 > 高中数学人教A版选修1-1第1章1.3.3简单的逻辑联结词教学设计

高中数学人教A版选修1-1第1章1.3.3简单的逻辑联结词教学设计

docx 2022-08-19 22:10:04 9页
剩余7页未读,查看更多需下载
1.3.3非(not)【学情分析】:(1)上节课已经学习了简单的逻辑联结词“且”、“或”的含义和简单运用,本节课继续学习简单的逻辑联结词“非”的含义和简单运用;(2)一般地,对一个命题p全盘否定,就得到一个新命题,记作:p,读作“非p”或“p的否定”;了解和掌握“非”命题最常见的几个正面词语的否定:正面是都是至多有一个至少有一个任意的所有的否定不是不都是至少有两个一个也没有某个某些(3)注意“且”、“或”“非”的含义和简单运用的区别和联系。(4)培养学生用所学知识解决综合数学问题的能力。【教学目标】:(1)知识目标:通过实例,了解简单的逻辑联结词“非”的含义;(2)过程与方法目标:了解含有逻辑联结词“非”复合命题的概念及其构成形式,能对\n逻辑联结词“非”构成命题的真假作出正确判断;(3)情感与能力目标:能准确区分命题的否定与否命题的区别;在知识学习的基础上,培养学生简单推理的技能。【教学重点】:(1)了解逻辑联结词“非”的含义,使学生能正确地表述相关数学内容;(2)区别“或”、“且”、“非”的含义和运用的异同;【教学难点】:(1)简洁、准确地表述“非”命题以及对逻辑联结词“非”构成命题的真假判断;(2)区别“或”、“且”、“非”的含义和运用的异同;【教学过程设计】:教学环节教学活动设计意图\n情境引入问题1:如果是真命题,那么p∨q一定是真命题吗?反之,如果p∨q是真命题,那么一定是真命题吗?问题2:下列两个命题间有什么关系,判断真假.(1)35能被5整除;(2)35不能被5整除;通过数学实例,认识用逻辑联结词“非”构成命题可以得到一个新命题;知识建构归纳总结:(1)一般地,对一个命题全盘否定就得到一个新命题,记作,读作“非P”;(2)若P是真命题,则必是假命题;若P是假命题,则必是真命题.引导学生通过通过一些数学实例分析,概括出一般特征。自主学习1、引导学生阅读教科书上的例4中每组命题p让学生尝试写出命题,判断真假,纠正可能出现的逻辑错误.学习使用逻辑联结词“非”构成一个新命题,根据“非”的含义判断逻辑联结词“非”构成命题的真假。2:写出下列命题的非命题:(1)p:对任意实数x,均有x2-2x+1≥0;(2)q:存在一个实数x,使得x2-9=0(3)“AB∥CD”且“AB=CD”;\n(4)“△ABC是直角三角形或等腰三角形”.解:(1)存在一个实数x,使得x2-2x+1<0;(2)不存在一个实数x,使得x2-9=0;(3)AB不平行于CD或AB≠CD;(4)原命题是“p或q”形式的复合命题,它的否定形式是:△ABC既不是直角三角形又不是等腰三角形.学生探究指出下列命题的构成形式及真假:并指出“或”、“且”、“非”的区别与联系.(1)不等式没有实数解;(2)-1是偶数或奇数;(3)属于集合Q,也属于集合R;(4)解:(1)此命题是“非p”形式,是假命题。(2)此命题是“p∨q”形式,此命题是真命题。(3)此命题是“p∧q”形式,此命题是假命题。(4)此命题是“非p”形式,是假命题。通过探究,归纳总结判断“p且q”、“p或q”、“非p”形式的命题真假的方法。\n归纳总结:1.“p且q”形式的复合命题真假:当p、q为真时,p且q为真;当p、q中至少有一个为假时,p且q为假。(一假必假)pqp且q真真真真假假假真假假假假2.“p或q”形式的复合命题真假:当p、q中至少有一个为真时,p或q为真;当p、q都为假时,p或q为假。(一真必真)pqP或q真真真真假真假真真假假假3.“非p”形式的复合命题真假:当p为真时,非p为假;当p为假时,非p为真.(真假相反)p非p真假假真引导学生通过通过一些数学实例分析,概括出一般特征。\n提高练习1.分别指出由下列各组命题构成的p或q、p且q、非p形式的复合命题的真假:(1)p:2+2=5;q:3>2(2)p:9是质数;q:8是12的约数;(3)p:1∈{1,2};q:{1}{1,2}(4)p:{0};q:{0}解:①p或q:2+2=5或3>2;p且q:2+2=5且3>2;非p:2+25.∵p假q真,∴“p或q”为真,“p且q”为假,“非p”为真.②p或q:9是质数或8是12的约数;p且q:9是质数且8是12的约数;非p:9不是质数.∵p假q假,∴“p或q”为假,“p且q”为假,“非p”为真.③p或q:1∈{1,2}或{1}{1,2};p且q:1∈{1,2}且{1}{1,2};非p:1{1,2}.∵p真q真,∴“p或q”为真,“p且q”为真,“非p”为假.④p或q:φ{0}或φ={0};p且q:φ{0}且φ={0};非p:φ{0}.∵p真q假,∴“p或q”为真,“p且q”为假,“非p”为假.通过练习,使学生更进一步理解“p且q”、“p或q”、“非p”形式的命题的形式特点以及判断真假的规律,区别“非”命题与否命题。\n课堂小结(1)一般地,对一个命题全盘否定就得到一个新命题,记作,读作“非P”;(2)若P是真命题,则必是假命题;若P是假命题,则必是真命题.(3)1.“p且q”形式的复合命题真假:当p、q为真时,p且q为真;当p、q中至少有一个为假时,p且q为假。(一假必假)pqp且q真真真真假假假真假假假假2.“p或q”形式的复合命题真假:当p、q中至少有一个为真时,p或q为真;当p、q都为假时,p或q为假。(一真必真)pqP或q真真真真假真假真真假假假(3.“非p”形式的复合命题真假:当p为真时,非p为假;当p为假时,非p为真.(真假相反)p非p真假假真归纳整理本节课所学知识。反馈学生掌握逻辑联结词“且”的用法和含义的情况,巩固本节课所学的基本知识。\n布置作业1.课本P18A组3.2.见课后练习课后练习1.如果命题p是假命题,命题q是真命题,则下列错误的是()A.“p且q”是假命题B.“p或q”是真命题C.“非p”是真命题D.“非q”是真命题2.下列命题是真命题的有()A.5>2且7<3B.3>4或3<4C.7≥8D.方程x2-3x+4=0的判别式Δ≥03.若命题p:2n-1是奇数,q:2n+1是偶数,则下列说法中正确的是()A.p或q为真B.p且q为真C.非p为真D.非p为假4.如果命题“非p”与命题“p或q”都是真命题,那么()A.命题p与命题q的真值相同B.命题q一定是真命题C.命题q不一定是真命题D.命题p不一定是真命题5.由下列各组命题构成的复合命题中,“p或q”为真,“p且q”为假,“非p”为真的一组为()\nA.p:3为偶数,q:4为奇数B.p:π<3,q:5>3C.p:a∈{a,b},q:{a}{a,b}D.p:QR,q:N=Z6.在下列结论中,正确的是()①为真是为真的充分不必要条件;②为假是为真的充分不必要条件;③为真是为假的必要不充分条件;④为真是为假的必要不充分条件;A.①②B.①③C.②④D.③④参考答案:1.D2.A3.B4.B5.B6.B

相关推荐