高中数学人教A版选修2-1第1章1.3.3非(not)教学设计
docx
2022-08-22 20:00:07
5页
1.3.3非教学目标知识与技能目标:(1)掌握逻辑联结词“非”的含义(2)正确应用逻辑联结词“非”解决问题(3)掌握真值表并会应用真值表解决问题过程与方法目标:观察和思考中,在解题和证明题中,本节课要特别注重学生思维能力中严密性品质的培养.情感态度价值目标:激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神.(二)教学重点与难点重点:通过数学实例,了解逻辑联结词“非”的含义,使学生能正确地表述相关数学内容.难点:1、正确理解命题“¬P”真假的规定和判定.2、简洁、准确地表述命题“¬P”.\n教具准备:与教材内容相关的资料。教学设想:激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神.教学过程学生探究过程:1、思考、分析问题1:下列各组命题中的两个命题间有什么关系?(1)①35能被5整除;②35不能被5整除;(2)①方程x2+x+1=0有实数根。②方程x2+x+1=0无实数根。学生很容易看到,在每组命题中,命题②是命题①的否定。2、归纳定义一般地,对一个命题p全盘否定,就得到一个新命题,记作¬p读作“非p”或“p的否定”。3、命题“¬p”与命题p的真假间的关系命题“¬p”与命题p的真假之间有什么联系?引导学生分析前面所举例子中命题p与命题¬p\n的真假性,概括出这两个命题的真假之间的关系的一般规律。例如:在上面的例子中,第(1)组命题中,命题①是真命题,而命题②是假命题。第(2)组命题中,命题①是假命题,而命题②是真命题。由此可以看出,既然命题¬P是命题P的否定,那么¬P与P不能同时为真命题,也不能同时为假命题,也就是说,若p是真命题,则¬p必是假命题;若p是假命题,则¬p必是真命题;p¬P真假假真4、命题的否定与否命题的区别让学生思考:命题的否定与原命题的否命题有什么区别?命题的否定是否定命题的结论,而命题的否命题是对原命题的条件和结论同时进行否定,因此在解题时应分请命题的条件和结论。例:如果命题p:5是15的约数,那么\n命题¬p:5不是15的约数;p的否命题:若一个数不是5,则这个数不是15的约数。显然,命题p为真命题,而命题p的否定¬p与否命题均为假命题。5.例题分析 例1 写出下表中各给定语的否定语。若给定语为等于大于是都是至多有一个至少有一个其否定语分别为 分析:“等于”的否定语是“不等于”; “大于”的否定语是“小于或者等于”; “是”的否定语是“不是”; “都是”的否定语是“不都是”; “至多有一个”的否定语是“至少有两个”; “至少有一个”的否定语是“一个都没有”;\n例2:写出下列命题的否定,判断下列命题的真假(1)p:y=sinx是周期函数;(2)p:3<2;(3)p:空集是集合A的子集。解略.6.巩固练习:P20练习第3题7.教学反思:(1)正确理解命题“¬P”真假的规定和判定.(2)简洁、准确地表述命题“¬P”.8.作业 P20:习题1.3A组第3题