当前位置: 首页 > 高中 > 数学 > 高中数学人教A版选修2-1第2章2.2.2椭圆的简单几何性质3教学设计

高中数学人教A版选修2-1第2章2.2.2椭圆的简单几何性质3教学设计

docx 2022-08-22 20:00:08 4页
剩余2页未读,查看更多需下载
2.椭圆中焦点三角形的性质及应用定义:椭圆上任意一点与两焦点所构成的三角形称为焦点三角形。性质一:已知椭圆方程为两焦点分别为设焦点三角形中则。性质二:已知椭圆方程为左右两焦点分别为设焦点三角形,若最大,则点P为椭圆短轴的端点。证明:设,由焦半径公式可知:,在中,=\n性质三:已知椭圆方程为两焦点分别为设焦点三角形中则证明:设则在中,由余弦定理得:命题得证。(2000年高考题)已知椭圆的两焦点分别为若椭圆上存在一点使得求椭圆的离心率的取值范围。简解:由椭圆焦点三角形性质可知即,于是得到的取值范围是性质四:已知椭圆方程为两焦点分别为设焦点三角形,则椭圆的离心率。\n由正弦定理得:由等比定理得:而,∴。已知椭圆的焦点是F1(-1,0)、F2(1,0),P为椭圆上一点,且|F1F2|是|PF1|和|PF2|的等差中项.(1)求椭圆的方程;(2)若点P在第三象限,且∠PF1F2=120°,求tanF1PF2.解:(1)由题设2|F1F2|=|PF1|+|PF2|∴2a=4,又2c=2,∴b=∴椭圆的方程为=1.(2)设∠F1PF2=θ,则∠PF2F1=60°-θ椭圆的离心率则\n,整理得:5sinθ=(1+cosθ)∴故,tanF1PF2=tanθ=.

相关推荐