高中数学人教A版选修2-3第2章2.1.1离散型随机变量1教学设计
docx
2022-08-23 09:00:07
6页
2.1.1离散型随机变量思考1:掷一枚骰子,出现的点数可以用数字1,2,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示呢?掷一枚硬币,可能出现正面向上、反面向上两种结果.虽然这个随机试验的结果不具有数量性质,但我们可以用数1和0分别表示正面向上和反面向上(图2.1一1).在掷骰子和掷硬币的随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.定义1:随着试验结果变化而变化的变量称为随机变量(randomvariable).随机变量常用字母X,Y,,,…表示.思考2:随机变量和函数有类似的地方吗?\n随机变量和函数都是一种映射,随机变量把随机试验的结果映为实数,函数把实数映为实数.在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.我们把随机变量的取值范围叫做随机变量的值域.例如,在含有10件次品的100件产品中,任意抽取4件,可能含有的次品件数X将随着抽取结果的变化而变化,是一个随机变量,其值域是{0,1,2,3,4}.利用随机变量可以表达一些事件.例如{X=0}表示“抽出0件次品”,{X=4}表示“抽出4件次品”等.你能说出{X<3}在这里表示什么事件吗?“抽出3件以上次品”又如何用X表示呢?定义2:所有取值可以一一列出的随机变量,称为离散型随机变量(discreterandomvariable).离散型随机变量的例子很多.例如某人射击一次可能命中的环数X是一个离散型随机变量,它的所有可能取值为0,1,…,10;某网页在24小时内被浏览的次数Y也是一个离散型随机变量,它的所有可能取值为0,1,2,….思考3:电灯的寿命X是离散型随机变量吗?电灯泡的寿命X的可能取值是任何一个非负实数,而所有非负实数不能一一列出,所以X不是离散型随机变量.在研究随机现象时,需要根据所关心的问题恰当地定义随机变量.例如,如果我们仅关心电灯泡的使用寿命是否超过1000小时,那么就可以定义如下的随机变量:\n与电灯泡的寿命X相比较,随机变量Y的构造更简单,它只取两个不同的值0和1,是一个离散型随机变量,研究起来更加容易.连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量如某林场树木最高达30米,则林场树木的高度是一个随机变量,它可以取(0,30]内的一切值4.离散型随机变量与连续型随机变量的区别与联系:离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出注意:(1)有些随机试验的结果虽然不具有数量性质,但可以用数量来表达如投掷一枚硬币,=0,表示正面向上,=1,表示反面向上(2)若是随机变量,是常数,则也是随机变量三、讲解范例:例1.写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果\n(1)一袋中装有5只同样大小的白球,编号为1,2,3,4,5现从该袋内随机取出3只球,被取出的球的最大号码数ξ;(2)某单位的某部电话在单位时间内收到的呼叫次数η解:(1)ξ可取3,4,5ξ=3,表示取出的3个球的编号为1,2,3;ξ=4,表示取出的3个球的编号为1,2,4或1,3,4或2,3,4;ξ=5,表示取出的3个球的编号为1,2,5或1,3,5或1,4,5或2,3或3,4,5(2)η可取0,1,…,n,…η=i,表示被呼叫i次,其中i=0,1,2,…例2.抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:“ξ>4”表示的试验结果是什么?答:因为一枚骰子的点数可以是1,2,3,4,5,6六种结果之一,由已知得-5≤ξ≤5,也就是说“ξ>4”就是“ξ=5”所以,“ξ>4”表示第一枚为6点,第二枚为1点例3某城市出租汽车的起步价为10元,行驶路程不超出4km,则按10元的标准收租车费\n若行驶路程超出4km,则按每超出lkm加收2元计费(超出不足1km的部分按lkm计).从这个城市的民航机场到某宾馆的路程为15km.某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量,他收旅客的租车费可也是一个随机变量(1)求租车费η关于行车路程ξ的关系式;(Ⅱ)已知某旅客实付租车费38元,而出租汽车实际行驶了15km,问出租车在途中因故停车累计最多几分钟?解:(1)依题意得η=2(ξ-4)+10,即η=2ξ+2(Ⅱ)由38=2ξ+2,得ξ=18,5×(18-15)=15.所以,出租车在途中因故停车累计最多15分钟.四、课堂练习:1.①某寻呼台一小时内收到的寻呼次数;②长江上某水文站观察到一天中的水位;③某超市一天中的顾客量其中的是连续型随机变量的是()A.①; B.②; C.③; D.①②③2.随机变量的所有等可能取值为,若,则()\nA.; B.; C.; D.不能确定3.抛掷两次骰子,两个点的和不等于8的概率为()A.; B.; C.; D.4.如果是一个离散型随机变量,则假命题是()A.取每一个可能值的概率都是非负数;B.取所有可能值的概率之和为1;C.取某几个值的概率等于分别取其中每个值的概率之和;D.在某一范围内取值的概率大于它取这个范围内各个值的概率之和答案:1.B2.C3.B4.D五、小结:随机变量离散型、随机变量连续型随机变量的概念随机变量ξ是关于试验结果的函数,即每一个试验结果对应着一个实数;随机变量ξ的线性组合η=aξ+b(其中a、b是常数)也是随机变量