当前位置: 首页 > 高中 > 数学 > 人教A版必须2高一数学课件:空间几何体

人教A版必须2高一数学课件:空间几何体

pptx 2021-12-15 11:53:44 26页
剩余22页未读,查看更多需下载
章末复习课第一章空间几何体,1.整合知识结构,梳理知识网络,进一步巩固、深化所学知识;2.能熟练画出几何体的直观图或三视图,能熟练地计算空间几何体的表面积和体积,体会通过展开图、截面化空间为平面的方法.要点归纳题型探究达标检测学习目标,1.空间几何体的结构特征及其侧面积和体积答案名称定义图形侧面积体积多面体棱柱有两个面________,其余各面都是________,并且每相邻两个四边形的公共边都_________S侧=Ch,C为底面的周长,h为高V=Sh互相平行形四边互相平行要点归纳主干梳理点点落实,答案多面体棱锥有一个面是_______,其余各面都是_______________的三角形S侧=Ch,C为底面的周长,h为高V=Sh棱台用一个______________的平面去截棱锥,底面与截面之间的部分S侧=(C+C′)h,C,C′为底面的周长,h为高多边形有一个公共顶点平行于棱锥底面,答案旋转体圆柱以__________所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体S侧=2πrh,r为底面半径,h为高V=Sh=πr2h圆锥以直角三角形的___________所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体S侧=πrl,r为底面半径,h为高V=Sh=πr2h矩形的一边一条直角边,答案旋转体圆台用_______________的平面去截圆锥,__________之间的部分S侧=π(r1+r2)l,r1,r2为底面半径,h为高球以___________所在直线为旋转轴,______旋转一周形成的旋转体S球面=4πR2,R为球的半径平行于圆锥底面底面和截面半圆的直径半圆面,2.空间几何体的三视图与直观图(1)三视图是观察者从三个不同位置观察同一个空间几何体而画出的图形;它包括正视图、侧视图、俯视图三种.画图时要遵循“长对正、高平齐、宽相等”的原则.注意三种视图的摆放顺序,在三视图中,分界线和可见轮廓线都用实线画出,不可见轮廓线用虚线画出.熟记常见几何体的三视图.画组合体的三视图时可先拆,后画,再检验.,(2)斜二测画法:主要用于水平放置的平面图形或立体图形的画法.它的主要步骤:①画轴;②画平行于x、y、z轴的线段分别为平行于x′、y′、z′轴的线段;③截线段:平行于x、z轴的线段的长度不变,平行于y轴的线段的长度变为原来的一半.三视图和直观图都是空间几何体的不同表示形式,两者之间可以互相转化.(3)转化思想在本章应用较多,主要体现在以下几个方面①曲面化平面,如几何体的侧面展开,把曲线(折线)化为线段.②等积变换,如三棱锥转移顶点等.③复杂化简单,把不规则几何体通过分割,补体化为规则的几何体等.返回,类型一 三视图与直观图题型探究重点难点个个击破例1已知某几何体的三视图如图所示,则该几何体的体积为()解析答案反思与感悟,解析将三视图还原为实物图求体积.由三视图可知,此几何体(如图所示)是底面半径为1,反思与感悟答案B,反思与感悟由三视图确定几何体分三步.第一步:通过正视图和侧视图确定是柱体、锥体还是台体.若正视图和侧视图为矩形,则原几何体为柱体;若正视图和侧视图为等腰三角形,则原几何体为锥体;若正视图和侧视图为等腰梯形,则原几何体为台体.第二步:通过俯视图确定是多面体还是旋转体.若俯视图为多边形,则原几何体为多面体;若俯视图为圆,则原几何体为旋转体.第三步:由“长对正、高平齐、宽相等”的原则确定几何体的尺寸.,跟踪训练1一几何体的三视图如图所示.(1)说出该几何体的结构特征并画出直观图;解由三视图知该几何体是由一个圆柱与一个等底圆锥拼接而成的组合体,其直观图如图所示.解析答案,(2)计算该几何体的体积与表面积.解由三视图中尺寸知,组合体下部是底面直径为8cm,高为20cm的圆柱,上部为底面直径为8cm,母线长为5cm的圆锥.表面积S=π·42+2π·4·20+π·4·5=196π(cm2).∴该几何体的体积为336πcm3,表面积为196πcm2.解析答案,类型二 柱体、锥体、台体的表面积和体积例2圆柱有一个内接长方体AC1,长方体对角线长是圆柱的侧面展开平面图为矩形,此矩形的面积是100πcm2,求圆柱的体积.解设圆柱底面半径为rcm,高为hcm.如图所示,则圆柱轴截面长方形的对角线长等于它的内接长方体的体对角线长,反思与感悟∴V圆柱=Sh=πr2h=π×52×10=250π(cm3).∴圆柱体积为250πcm3.解析答案则,反思与感悟几何体的表面积及体积的计算是现实生活中经常能够遇到的问题,在计算中应注意各数量之间的关系及各元素之间的位置关系,特别是特殊的柱、锥、台体,要注意其中矩形、梯形及直角三角形等重要的平面图形的应用.,跟踪训练2正四棱柱的对角线长为3cm,它的表面积为16cm2,求它的体积.解设正四棱柱的底面边长为acm,高为bcm,返回解析答案,类型三 几何体的有关最值问题例3如图,在底面半径为1,高为2的圆柱上A点处有一只蚂蚁,它要围绕圆柱由A点爬到B点,问蚂蚁爬行的最短距离是多少?解把圆柱的侧面沿AB剪开,然后展开成为平面图形——矩形,如图所示,连接AB′,则AB′即为蚂蚁爬行的最短距离.∵AB=A′B′=2,AA′为底面圆的周长,且AA′=2π×1=2π,解析答案反思与感悟,有关旋转体中某两点表面上的长度最小问题,一般是利用展开图中两点的直线距离最小来求解;有关面积和体积的最值问题,往往把面积或体积表示为某一变量的二次函数的形式,然后利用二次函数的知识求最值.反思与感悟,跟踪训练3有一根长为3πcm,底面半径为1cm的圆柱形铁管,用一段铁丝在铁管上缠绕2圈,并使铁丝的两个端点落在圆柱的同一母线的两端,求铁丝的最短长度.解把圆柱侧面及缠绕其上的铁丝展开,在平面上得到矩形ABCD(如图所示),由题意知BC=3πcm,AB=4πcm,点A与点C分别是铁丝的起、止位置,故线段AC的长度即为铁丝的最短长度.故铁丝的最短长度为5πcm.返回解析答案,123达标检测解析答案1.湖面上浮着一个球,湖水结冰后将球取出,冰上留下一个冰面直径为24cm,深为8cm的空穴,则这个球的半径为()A.8cmB.10cmC.12cmD.13cm45解析冰面空穴是球的一部分,截面图如图所示,设球心为O,冰面圆的圆心为O1,球半径为R,在Rt△OO1B中,由勾股定理R2=(R-8)2+122,解得R=13(cm).D,解析答案2.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()12345A.14斛B.22斛C.36斛D.66斛,12345答案B,解析答案3.某三棱锥的三视图如图所示,则该三棱锥的体积是()12345解析由三视图知底面为等腰直角三角形,三棱锥的高为2.C,解析答案123454.如图所示,已知正三棱柱ABC-A1B1C1的底面边长为1,高为8,一质点从A出发,沿着三棱柱的侧面绕行两周到达A1点的最短路径的长为___.解析如下图所示,将两个三棱柱的侧面沿侧棱AA1展开并拼接,10,5.如右图是一个奖杯的三视图,求这个奖杯的体积.解由三视图可以得到奖杯的结构,底座是一个四棱台,杯身是一个长方体,顶部是球体.12345所以,这个奖杯的体积为解析答案,规律与方法1.研究空间几何体,需在平面上画出几何体的直观图或三视图,由几何体的直观图可画它的三视图,由三视图可得到其直观图,同时可以通过作截面把空间几何问题转化成平面几何问题来解决.2.圆柱、圆锥、圆台的表面积公式,我们都是通过展开图、化空间为平面的方法得到的,求球的切接问题通常也是由截面把空间问题转化为平面问题解决.返回

相关推荐