当前位置: 首页 > 高中 > 数学 > 人教B版(2019)高中数学必修第三册第八章:8.1.2《向量数量积的运算律》课件

人教B版(2019)高中数学必修第三册第八章:8.1.2《向量数量积的运算律》课件

ppt 2021-12-21 11:31:06 13页
剩余9页未读,查看更多需下载
2.3.2向量数量积的运算律,复习回顾1.两个向量的夹角2.向量在轴上的正射影正射影的数量3.向量的数量积(内积)a&middot;b=4.两个向量的数量积的性质:(1).abab=0(2).aa=|a|2或(3).cos=范围0&le;〈a,b〉&le;&pi;;,平面向量数量积的运算律已知向量和实数,则向量的数量积满足:(1)(交换律)(2)(数乘结合律)(3)(分配律)注意:数量积运算不满足结合律消去律,(1)交换律:证明:设夹角为,则所以,(2)若证明:若数乘结合律,(3)分析:12A1B1AOBC分配律,平面向量数量积的常用公式,例1已知与的夹角为60&deg;,求:(1)在方向上的投影;(2)在方向上的投影;(3)=2=3解:(3),的夹角为120&deg;,例2.︱a︱=2,︱b︱=3,求已知与ab,,垂直与aba-∵oo]1800[,&Icirc;q∵例3.已知︱a︱=1,︱b︱=2,a与a-b垂直.求a与b的夹角,())(babak2+^-∵变形:已知:a与bo的夹角为60b=4,a=5,问当k为何值时向量ka-b与a+2b垂直?,所以=4-2&times;4&times;(-0.5)=8.例4.已知|a|=2,|b|=4,<a,b>=120&deg;,求a与a-b的夹角。解:(a-b)&middot;a=|a|2-a&middot;b|a-b|=2(a-b)2=|a|2-2a&middot;b+|b|2=28,</a,b>

相关推荐