高一数学人教A版必修4课件:2.1 平面向量的实际背景及基本概念
pptx
2023-03-17 17:45:02
35页
§2.1平面向量的实际背景及基本概念,明目标知重点填要点记疑点探要点究所然内容索引010203当堂测查疑缺04,1.能结合物理中的力、位移、速度等具体背景认识向量,掌握向量与数量的区别.2.会用有向线段作向量的几何表示,了解有向线段与向量的联系与区别,会用字母表示向量.3.理解零向量、单位向量、平行向量、共线向量、相等向量及向量的模等概念,会辨识图形中这些相关的概念.明目标、知重点,1.向量既有,又有的量叫做向量.2.向量的几何表示以A为起点、B为终点的有向线段记作.3.向量的有关概念(1)零向量:长度为的向量叫做零向量,记作.(2)单位向量:长度等于个单位的向量,叫做单位向量.大小填要点·记疑点方向001,(3)相等向量:的向量叫做相等向量.(4)平行向量(共线向量):方向的向量叫做平行向量,也叫共线向量.①记法:向量a平行于向量b,记作.②规定:零向量与平行.长度相等且方向相同相同或相反非零a∥b任一向量,探要点·究所然情境导学回顾学习数的概念,我们可以从一支笔、一棵树、一本书……中抽象出只有大小的数量“1”,类似地,我们可以对力、位移……这些既有大小,又有方向的量进行抽象,形成一种新的量,即向量.,探究点一 向量的概念和几何表示我们知道,力和位移都是既有大小,又有方向的量.数学中,我们把这种既有大小,又有方向的量叫做向量.而把那些只有大小,没有方向的量称为数量.例如,已知下列各量:①力;②功;③速度;④质量;⑤温度;⑥位移;⑦加速度;⑧重力;⑨路程;⑩密度.其中是数量的有②④⑤⑨⑩,是向量的有①③⑥⑦⑧.,思考1向量与数量有什么联系和区别?向量有哪几种表示?答联系是向量与数量都是有大小的量;区别是向量有方向且不能比较大小,数量无方向且能比较大小.向量可以用有向线段表示,也可以用字母符号表示.用表示向量的有向线段的长度表示向量的大小,也就是向量的长度(或称模).记作||有向线段箭头表示向量的方向.,思考2向量的模可以为0吗?可以为1吗?可以为负数吗?答向量的模可以为0,也可以为1,不可以为负数.思考3向量与有向线段有什么区别?答向量只有大小和方向两个要素,与起点无关.只要大小和方向相同,这两个向量就是相同的向量;有向线段是表示向量的工具,它有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.,探究点二 几个向量概念的理解思考1长度为零的向量叫什么向量?长度为1的向量叫什么向量?答长度为零的向量叫做零向量,记作0,它的方向是任意的.长度(或模)为1的向量叫做单位向量.思考2满足什么条件的两个向量是相等向量?单位向量是相等向量吗?答长度相等、方向相同的向量叫做相等向量.若向量a与b相等,记作a=b.单位向量不一定是相等向量.,小结研究向量问题时要注意,从大小和方向两个方面考虑,不可忽略其中任何一个要素.对于初学者来讲,由于向量是一个相对新的概念,常常因忽略向量的方向性而致错.思考3在同一平面内,把所有长度为1的向量的始点固定在同一点,这些向量的终点形成的轨迹是什么?答单位圆.,探究点三 平行向量与共线向量思考1如果两个非零向量所在的直线互相平行,那么这两个向量的方向有什么关系?答方向相同或相反.小结方向相同或相反的非零向量叫做平行向量.向量a、b平行,通常记作a∥b.规定:零向量与任一向量平行,即对于任意向量a,都有0∥a.,由于任一组平行向量都可以移动到同一直线上,因此,平行向量也叫做共线向量.也就是说,平行向量与共线向量是等价的,因此要注意避免向量平行、共线与平面几何中的直线、线段的平行和共线相混淆.,思考2如果非零向量是共线向量,那么点A、B、C、D是否一定共线?答点A、B、C、D不一定共线.,思考3若向量a与b平行(或共线),则向量a与b相等吗?反之,若向量a与b相等,则向量a与b平行(或共线)吗?向量平行具备传递性吗?答向量a与b平行(或共线),则向量a与b不一定相等;向量a与b相等,则向量a与b平行(或共线).向量的平行不具备传递性,即若a∥b,b∥c,则未必有a∥c,这是因为,当b=0时,a、c可以是任意向量,但若b≠0,必有a∥b,b∥c⇒a∥c.,小结在今后学习时要特别注意零向量的特殊性,解答问题时,一定要看清题目中是“零向量”还是“非零向量”.,例1判断下列命题是否正确,并说明理由.①若a≠b,则a一定不与b共线;②若则A、B、C、D四点是平行四边形的四个顶点;③在平行四边形ABCD中,一定有④若向量a与任一向量b平行,则a=0;⑤若a=b,b=c,则a=c;⑥若a∥b,b∥c,则a∥c.,解两个向量不相等,可能是长度不同,方向可以相同或相反,所以a与b有共线的可能,故①不正确.②A、B、C、D四点可能在同一条直线上,故②不正确.③在平行四边形ABCD中,与平行且方向相同,故③正确.,④零向量的方向是任意的,与任一向量平行,④正确.⑤a=b,则|a|=|b|且a与b方向相同;b=c,则|b|=|c|且b与c方向相同,则a与c方向相同且模相等,故a=c,⑤正确.若b=0,由于a的方向与c的方向都是任意的,a∥c可能不成立;b≠0时,a∥c成立,故⑥不正确.反思与感悟对于命题的判断正误题,应熟记有关概念,看清、理解各命题,逐一进行判断,有时对错误命题的判断只需举一反例即可.,跟踪训练1判断下列命题是否正确,并说明理由.①若向量a与b同向,且|a|>|b|,则a>b;解不正确.因为向量是不同于数量的一种量.它由两个因素来确定,即大小与方向,所以两个向量不能比较大小,故①不正确.②若向量|a|=|b|,则a与b的长度相等且方向相同或相反;解不正确.由|a|=|b|只能判断两向量长度相等,并不能判断方向.,③对于任意|a|=|b|,且a与b的方向相同,则a=b;解正确.因为|a|=|b|,且a与b同向.由两向量相等的条件可得a=b.④向量a与向量b平行,则向量a与b方向相同或相反.解不正确.因为向量a与向量b若有一个是零向量,则其方向不确定.,例2一辆汽车从A点出发向西行驶了100km到达B点,然后又改变方向向西偏北50°走了200km到达C点,最后又改变方向,向东行驶了100km到达D点.(1)作出向量解(1)向量如图所示.,∴在四边形ABCD中,AB綊CD.∴四边形ABCD为平行四边形.,反思与感悟准确画出向量的方法是先确定向量的起点,再确定向量的方向,然后根据向量的大小确定向量的终点.,跟踪训练2在如图的方格纸上,已知向量a,每个小正方形的边长为1.(1)试以B为终点画一个向量b,使b=a;(2)在图中画一个以A为起点的向量c,使|c|=,并说出向量c的终点的轨迹是什么?解根据相等向量的定义,所作向量与向量a平行,且长度相等(作图略).解由平面几何知识可知所有这样的向量c的终点的轨迹是以A为圆心,半径为的圆(作图略).,例3如图所示,△ABC的三边均不相等,E、F、D分别是AC、AB、BC的中点.(1)写出与共线的向量;解因为E、F分别是AC、AB的中点,,反思与感悟(1)非零向量共线是指向量的方向相同或相反;(2)共线的向量不一定相等,但相等的向量一定共线.,跟踪训练3如图,设O是正六边形ABCDEF的中心,分别写出图中所示向量与相等的向量.,当堂测·查疑缺12341.下列说法正确的是()A.数量可以比较大小,向量也可以比较大小B.方向不同的向量不能比较大小,但同向的可以比较大小C.向量的大小与方向有关D.向量的模可以比较大小,1234解析A中不管向量的方向如何,它们都不能比较大小,所以A不正确;由A的过程分析可知方向相同的向量也不能比较大小,所以B不正确;C中向量的大小即向量的模,指的是有向线段的长度,与方向无关,所以C不正确;D中向量的模是一个数量,可以比较大小,所以D正确.答案D,12342.如图,在四边形ABCD中,若则图中相等的向量是()D,12343.如图,在△ABC中,若DE∥BC,则图中所示向量中是共线向量的有________________________.解析观察图形,并结合共线向量的定义可得解.,1234∴AB∥DC,但AB≠DC,∴四边形ABCD是梯形.梯形,呈重点、现规律1.向量是既有大小又有方向的量,从其定义看出向量既有代数特征又有几何特征,因此借助于向量,我们可以将某些代数问题转化为几何问题,又将几何问题转化为代数问题,故向量能起数形结合的桥梁作用.2.共线向量与平行向量是一组等价的概念.平行向量是指向量所在直线平行或重合即可,是一种广意平行.,3.注意两个特殊向量——零向量和单位向量,零向量与任何向量都平行,单位向量有无穷多个,起点相同的所有单位向量的终点在平面内形成一个单位圆.