2022年秋八年级上册期末考试模拟题及答案解析(共5套)
docx
2022-08-12 20:00:02
50页
2022年秋八年级上册期末考试模拟题(一)一、选择题1.下列一组数:﹣8,2.6,0,﹣π,﹣,0.202002…(每两个2中逐次增加一个0)中,无理数有( )A.0个B.1个C.2个D.3个2.下列实数中,最大的是( )A.﹣1B.﹣2C.﹣0.5D.﹣3.下列说法正确的是( )A.(﹣3)2的平方根是3B.=±4C.1的平方根是1D.4的算术平方根是24.下列两个变量之间不存在函数关系的是( )A.圆的面积S和半径r之间的关系B.某地一天的温度T与时间t的关系C.某班学生的身高y与这个班学生的学号x的关系D.一个正数b的平方根a与这个正数b之间的关系5.下列函数:①y=2x+1②y=③y=x2﹣1④y=﹣8x中,是一次函数的有( )A.1个B.2个C.3个D.4个6.在Rt△ABC中,∠ACB=90°,D,E是边AB上两点,且CE所在直线垂直平分线段AD,CD平分∠BCE,AC=5cm,则BD的长为( )A.5cmB.6cmC.7cmD.8cm7.如图,△EFG≌NMH,△EFG的周长为15cm,HM=6cm,EF=4cm,EH=1cm,则HG等于( )\nA.4cmB.5cmC.6cmD.8cm8.下列不是无理数的一项是( )A.π的相反数B.π的倒数C.π的平方根D.9.点A(a﹣3,﹣1)与点B(2,b+2)关于x轴对称,则a,b的值分别是( )A.a=1,b=﹣3B.a=1,b=﹣1C.a=5,b=﹣3D.a=5,b=﹣110.已知直线y=2x与y=﹣x+b的交点的坐标为(1,a),则方程组的解是( )A.B.C.D.11.函数y=ax+b(a,b为常数,a≠0)的图象如图所示,则关于x的不等式ax+b>0的解集是( )A.x>4B.x<0C.x<3D.x>312.如图,OP=1,过P作PP1⊥OP,得OP1=;再过P1作P1P2⊥OP1且P1P2=1,得OP2=;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2;…依次法继续作下去,S1,S2,S3…分别表示各个三角形的面积,那么S12+S22+S32+…+S92的值是( )A.B.C.D.55二.填空题\n13.计算:﹣()﹣1+(π﹣2018)0﹣|﹣1|= .14.如果+(2y+1)2=0,那么x2018y2017= 15.如果+3是一次函数,则m的值是 .16.若3,4,a和5,b,13是两组勾股数,则a+b的值是 .17.一次函数y=ax+b在直角坐标系中的图象如图所示,则化简﹣|a+b|的结果是 .三.解答题18.在平面直角坐标系中,点P(m,n)在第一象限,且在直线y=﹣x+6上,点A的坐标为(5,0),O是坐标原点,△PAO的面积是S.(1)求S与m的函数关系式,并画出函数S的图象;(2)小杰认为△PAO的面积可以为15,你认为呢?19.求值:(1)|﹣2|﹣+(﹣1)×(﹣3)(2)(﹣1)2018+|1﹣|﹣20.如图,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于点E,点F在AC上,BE=FC.求证:BD=DF.\n21.在Rt△ABC中,∠ACB=90°,CD⊥AB于D,∠BAC的平分线AF交CD于点E,交BC于F,CM⊥AF于M,CM的延长线交AB于点N.(1)求证:EM=FM;(2)求证:AC=AN.22.如图:已知AB∥CD,BC⊥CD,且CD=2AB=12,BC=8,E是AD的中点,①请你用直尺(无刻度)作出一条线段与BE相等;并证明之;②求BE的长.23.“交通管理条例第三十五条”规定:小汽车在城街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪正前方50米处,过了6秒后,测得小汽车与车速检测仪间距离为130米,这辆小汽车超速了吗?24.某图书馆开展两种方式的租书业务:一种是使用会员卡,另一种是使用租书卡,使用这两种卡租一本书,租书金额y(元)与租书时间x(天)之间的关系如图所示:(1)用租书卡每天租书的收费为 元,用会员卡每天租书的收费是 元;\n(2)分别写出用租书卡和会员卡租书的金额y1、y2与租书时间x之间的函数关系式;(3)如果租书50天,选择哪种租书方式比较划算?如果花费80元租书,选择哪种租书方式比较划算?参考答案一.选择题1.【解答】解:无理数有﹣π,0.202002…(每两个2中逐次增加一个0),故选:C.2.【解答】解:∵﹣2<﹣<﹣1<﹣0.5,∴最大的数是﹣0.5,故选:C.3.【解答】解:A、(﹣3)2=9的平方根是±3,故此选项错误;B、=4,故此选项错误;C、1的平方根是±1,故此选项错误;D、4的算术平方根是2,正确.故选:D.4.【解答】解:A、圆的面积S和半径r之间的关系是S=πr2,符合函数的定义,不符合题意;B、某地一天的温度T与时间t的关系符合函数的定义,不符合题意;C、每一个学生对应一个身高,y是x的函数,不符合题意;D、一个正数b的平方根a与这个正数b之间的关系为a=±,b每取一个正数,a都有两个值与之对应,不符合函数的定义,符合题意;故选:D.\n5.【解答】解:①y=2x+1是一次函数,②y=是反比例函数,不是一次函数,③y=x2﹣1是二次函数,不是一次函数,④y=﹣8x是一次函数,故选:B.6.【解答】解:∵∠ACB=90°,CE⊥AB,∴∠ACE=∠B,∵CE所在直线垂直平分线段AD,∴CD=CA=5,∠ACE=∠DCE,∵CD平分∠BCE,∴∠DCE=∠BCD,∴∠BCD=∠B,∴BD=CD=5((cm),故选:A.7.【解答】解:∵△EFG≌△NMH,∴MN=EF=4cm,FG=MH,△HMN的周长=△EFG的周长=15cm,∴FG﹣HG=MH﹣HG,即FH=GM=1cm,∵△EFG的周长为15cm,∴HM=15﹣6﹣4=5cm,∴HG=5﹣1=4cm,故选:A.8.【解答】解:A、B、C都是无理数;D、=9,是有理数.故选:D.9.【解答】解:(2,b+2)与点(a﹣3,﹣1)关于x轴对称,得a﹣3=2,b+2=1.解得a=5,b=﹣1,故选:D.10.【解答】解:∵直线y=2x经过(1,a)∴a=2,\n∴交点坐标为(1,2),∵方程组的解就是两个一次函数的交点坐标,∴方程组的解,故选:A.11.【解答】解:关于x的不等式ax+b>0的解集为x<3.故选:C.12.【解答】解:由勾股定理得:OP1=,OP2=;OP3=2;OP4==;依此类推可得OPn=,∴S12=,S22=,S32=,…,S92=,∴S12+S22+S32+…+S92=.故选:C.二.填空题13.【解答】解:原式=3﹣5+1﹣(﹣1)=3﹣5+1﹣+1=2﹣3.故答案为:2﹣3.14.【解答】解:∵+(2y+1)2=0,∴x﹣2=0且2y+1=0,解得x=2,y=﹣,则原式=x•x2017y2017=x•(xy)2017=2×(﹣×2)2017=2×(﹣1)2017=2×(﹣1)=﹣2,故答案为:﹣2.\n15.【解答】解:∵+3是一次函数,∴2﹣m2=1且m﹣1≠0,解得m=﹣1.故答案是:﹣1.16.【解答】解:∵3,4,a和5,b,13是两组勾股数,∴a=5,b=12,∴a+b=17,故答案为:17.17.【解答】解:由图可得,a+b=0,b<0,∴a>0,a﹣b>0,∴﹣|a+b|=a﹣b﹣0=a﹣b,故答案为:a﹣b.三.解答题18.【解答】解:(1)∵P(m,n)在直线y=﹣x+6上,且在第一象限∴n=﹣m+6,即:点P到x轴距离为﹣m+6.∵点A坐标为(5,0),(2)△PAO的面积不可能为15.理由:若S=15,即,解得m=0,此时点P的坐标为(0,6),点P在第一象限不符合题意,故△PAO的面积不可能为15.19.【解答】解:(1)|﹣2|﹣+(﹣1)×(﹣3)=2﹣2+3=3;\n(2)(﹣1)2018+|1﹣|﹣=1+﹣1﹣2=﹣2.20.【解答】证明:∵AD平分∠BAC,DE⊥AB,∠C=90°,∴DC=DE,在△DCF和△DEB中,,∴△DCF≌△DEB,(SAS),∴BD=DF.21.【解答】(1)证明:∵∠ACB=90°,CD⊥AB,∴∠ADC=90°,∴∠AED+∠DAE=90°,∠CFE+∠CAE=90°,又∵∠BAC的平分线AF交CD于E,∴∠DAE=∠CAE,∴∠AED=∠CFE,又∵∠AED=∠CEF,∴∠CEF=∠CFE,又∵CM⊥AF,∴EM=FM.(2)证明:∵CN⊥AF,∴∠AMC=∠AMN=90°,在△AMN和△AMC中,,∴△AMN≌△AMC(SAS),∴AC=AN.22.【解答】解:①延长BE与CD相交于点F,则EF=BE,证明:∵AB∥CD,∴∠A=∠D,∠ABE=∠DFE,\n∵E是AD的中点,∴AE=DE,在△AEB与△DEF中,,∴△AEB≌△△DEF(AAS),∴BE=EF;②∵△AEB≌△△DEF,∴DF=AB=6,BE=EF=BF,∴CF=CD﹣DF=6,∵BC⊥CD,∴BF==10,∴BE=BF=5.23.【解答】解:由勾股定理得,BC===120米,v=120÷6=20米/秒,∵20×3.6=72,∴20米/秒=72千米/小时,72>70,∴这辆小汽车超速了.24.【解答】解:(1)租书卡每天租书花费:50÷100=0.5(元),设会员卡每天租书花费x元,则20+100x=50,得x=0.3;故答案为:0.5;0.3;\n(2)设用租书卡的函数关系式为:y=kx,∴100k=50,解得:k=0.5,∴用租书卡的关系为:y=0.5x,设用会员卡的关系为:y=ax+b,∴,解得:,∴用会员卡的关系式为:y=0.3x+20;(3)租书50天,租书卡花费0.5×50=25(元),会员卡花费0.3×50+20=35(元),说明使用会员卡比租书卡划算.花费80元租书,租书卡花费0.5×x=80(元),解得:x=160,会员卡花费0.3×x+20=80(元),解得:x=200,说明使用会员卡比租书卡划算.2022年秋八年级上册期末考试模拟题(二)一、选择题(每题3分,共30分)1.实数,0,-π,,,0.1010010001…(相邻两个1之间依次多一个0),其中无理数有( )A.1个 B.2个 C.3个 D.4个2.下列各式运算正确的是( )A.3a+2b=5abB.a3·a2=a5C.a8·a2=a4D.(2a2)3=-6a63.下列长度的四组线段中,可以构成直角三角形的是( )A.4,5,6B.1.5,2,2.5C.2,3,4D.1,,34.下列因式分解中,正确的个数为( )①x3+2xy+x=x(x2+2y);②x2+4x+4=(x+2)2;③-x2+y2=(x+y)(x-y).A.3个B.2个C.1个D.0个5.已知(a-2)2+|b-8|=0,则的平方根为( )\nA.±B.-C.±2D.26.下列命题中,正确的是( )A.如果|a|=|b|,那么a=bB.一个角的补角一定大于这个角C.直角三角形的两个锐角互余D.一个角的余角一定小于这个角7.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是( )A.BD=CDB.AB=ACC.∠B=∠CD.AD平分∠BAC(第7题)(第8题)(第9题)(第10题)8.如图所示,所提供的信息正确的是( )A.七年级学生最多B.九年级的男生人数是女生人数的2倍C.九年级女生比男生多D.八年级比九年级的学生多9.如图,在△MNP中,∠P=60°,MN=NP,MQ⊥PN,垂足为Q,延长MN至G,取NG=NQ,若△MNP的周长为12,MQ=a,则△MGQ的周长是( )A.8+2aB.8+aC.6+aD.6+2a10.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP,并延长交BC于点D,则下列说法中正确的个数是( )①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的垂直平分线上;④S△DAC∶S△DAB=CD∶DB=AC∶AB.A.1B.2C.3D.4二、填空题(每题3分,共30分)11.a的算术平方根为8,则a的立方根是________.12.某校对1200名女生的身高进行测量,身高在1.58m~1.63m这一小组的频率为0.25,则该组的人数为________.\n13.因式分解:x2y4-x4y2=______________.14.如图,M,N,P,Q是数轴上的四个点,这四个点中最适合表示的是________.(第14题)(第16题)(第18题)(第19题)15.已知(a-b)m=3,(b-a)n=2,则(a-b)3m-2n=________16.将一副三角尺如图所示叠放在一起,若AC=14cm,则阴影部分的面积是________cm2.17.若x<y,x2+y2=3,xy=1,则x-y=________.18.如图,在△ABC中,AB=AC=3cm,AB的垂直平分线分别交AB,AC于点M,N,△BCN的周长是5cm,则BC的长等于________cm.19.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在斜边AC上,点B与点B′重合,AE为折痕,则EB′=________.20.阅读下面材料:在数学课上,老师提出如下问题:尺规作图:作一条线段的垂直平分线.已知:线段AB.小芸的作法如下:如图,(1)分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于C,D两点;(2)作直线CD.老师说:“小芸的作法正确.”请回答:小芸的作图依据是____________.三、解答题(21,22题每题6分,23,24题每题8分,25,26题每题10分,27题12分,共60分)\n21.计算或因式分解:(1)+++(-1)2014; (2)a3-a2b+ab2.22.先化简,再求值:(x+y)(x-y)+(4xy3-8x2y2)÷4xy,其中x=1,y=.23.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,点C在DE上.求证:(1)△ABD≌△ACE;(2)∠BDA=∠ADE.(第23题)24.某市为了解学生的家庭教育情况,就八年级学生平时主要和谁在一起生活进行了抽样调查.下面是根据这次调查情况制作的不完整的频数分布表和扇形统计图(如图). 频数分布表(第24题)\n代码,和谁在一起生活,频数,频率A,父母,4200,0.7B,爷爷奶奶,660,aC,外公外婆,600,0.1D,其他,b,0.09合计,6000,1 请根据上述信息,回答下列问题:(1)a=________,b=________;(2)在扇形统计图中,和外公外婆在一起生活的学生所对应的扇形的圆心角的度数是多少?25.如图,在△ABC中,∠C=90°,把△ABC沿直线DE折叠,使△ADE与△BDE重合.(1)若∠A=35°,则∠CBD的度数为________;(2)若AC=8,BC=6,求AD的长;(3)当AB=m(m>0),△ABC的面积为m+1时,求△BCD的周长.(用含m的代数式表示)(第25题)26.如图,∠ABC=90°,点D、E分别在BC、AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD的延长线与AB的延长线相交于点M.(1)求证:∠FMC=∠FCM;(2)AD与MC垂直吗?并说明理由.\n(第26题)27.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠BAD=________°,∠DEC=________°,点D从B向C运动时,∠BDA逐渐变________(填“大”或“小”);(2)当DC等于多少时,△ABD与△DCE全等?请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数.若不可以,请说明理由.(第27题)\n参考答案:一、1.B 2.B 3.B 4.C 5.A 6.C 7.B 8.B 9.D10.D 点拨:④过点D作AB的垂线,再利用等高的两个三角形的面积之比等于底之比判断.二、11.4 12.300 13.x2y2(y+x)(y-x) 14.点P15. 点拨:(a-b)3m-2n=(a-b)3m÷(a-b)2n=[(a-b)m]3÷[(a-b)n]2=[(a-b)m]3÷[(b-a)n]2=33÷22=.16.9817.-1 点拨:(x-y)2=x2+y2-2xy=3-2×1=1,∵x<y,∴x-y<0,∴x-y=-=-1.18.219. 点拨:在Rt△ABC中,∠B=90°,AB=3,BC=4,∴AC=5,设BE=B′E=x,则EC=4-x,B′C=5-3=2,在Rt△B′EC中,由勾股定理得EC2=B′C2+B′E2,即(4-x)2=22+x2,解得x=.20.到线段两端距离相等的点在线段的垂直平分线上,两点确定一条直线三、21.解:(1)原式=-3+2+1=;(2)原式=a=a.22.解:原式=x2-y2+y2-2xy=x2-2xy,当x=1,y=时,原式=1-2×1×=0.23.证明:(1)∵∠BAC=∠DAE,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠CAE.又AB=AC,AD=AE,∴△ABD≌△ACE(S.A.S.);(2)由△ABD≌△ACE,可得∠BDA=∠E.又AD=AE,∴∠ADE=∠E,∴∠BDA=∠ADE.24.解:(1)0.11;540(2)0.1×360°=36°,故在扇形统计图中,和外公外婆在一起生活的学生所对应的扇形的圆心角的度数是36°.25.解:(1)20°(2)设AD=x,则BD=x,DC=8-x.在Rt△BCD中,DC2+BC2=BD2,即(8-x)2+62=x2,解得:x=.∴AD的长为.(3)由题意知:AC2+BC2=m2,AC·BC=m+1,∴(AC+BC)2-2AC·BC=m2,∴(AC+BC)2=m2+2AC·BC=m2+4(m+1)=(m+2)2,∴AC+BC=m+2,∴△BCD的周长=DB+DC+BC=AD+DC+BC=AC+BC=m+2.\n26.(1)证明:∵△ADE是等腰直角三角形,点F是AE的中点,∴DF⊥AE,∠ADF=∠EDF=45°,∴∠DAF=∠AED=45°,DF=AF=EF,又∵∠ABC=90°,∴∠DCF,∠AMF都与∠MAC互余,∴∠DCF=∠AMF.在△DFC和△AFM中,∴△DFC≌△AFM(A.A.S.),∴CF=MF,∴∠FMC=∠FCM;(2)解:AD⊥MC.理由如下:由(1)知,∠MFC=90°,FD=EF,FM=FC,∴∠FDE=∠FMC=45°,∴DE∥CM,又∵AD⊥DE,∴AD⊥MC.27.解:(1)25;115;小(2)当DC=2时,△ABD≌△DCE.理由如下:∵AB=AC,∴∠C=∠B=40°,∴∠DEC+∠EDC=140°.又∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,又∵AB=DC=2,∴△ABD≌△DCE(A.A.S.);(3)可以.∠BDA的度数为110°或80°.2022年秋八年级上册期末考试模拟题(三)一.选择题1.下列代数式中,属于分式的是( )A.﹣3B.﹣a﹣bC.D.﹣4a3b2.若分式的值为零,则m的取值为( )A.m=±1B.m=﹣1C.m=1D.m的值不存在3.已知a﹣1=20172+20182,则=( )A.4033B.4034C.4035D.40364.下列各数中:,3.,0.2020020002…(每两个2之间0的个数逐次增加1个),,0,3.1415926,﹣,,无理数有( )个.A.3B.4C.5D.65.若有意义,则x满足条件是( )A.x≥﹣3且x≠1B.x>﹣3且x≠1C.x≥1D.x≥﹣36.下列根式中属于最简二次根式的是( )\nA.B.C.D.7.如图,在Rt△ABC中,∠C=90°,点D为AB边中点,DE⊥AB,并与AC边交于点E.如果∠A=15°,BC=1,那么AC等于( )A.2B.C.D.8.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=6,DE=3,则△BCE的面积等于( )A.6B.8C.9D.189.如图,已知△ABC的面积为12,BP平分∠ABC,且AP⊥BP于点P,则△BPC的面积是( )A.10B.8C.6D.410.在Rt△ABC中,∠ACB=90°,CD是高,AC=4m,BC=3m,则线段CD的长为( )A.5mB.mC.mD.m11.在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,则下列结论一定成立的是( )\nA.BC=ECB.EC=BEC.BC=BED.AE=EC12.计算(1+)÷的结果是( )A.x+1B.C.D.二.填空题13.分式与的最简公分母是 .14.|1﹣|= .1﹣的相反数是 .15.如图,四边形OABC为长方形,OA=1,则点P表示的数为 .16.化简:(a>0)= .17.若3,4,a和5,b,13是两组勾股数,则a+b的值是 .18.如果一个三角形的三边长之比为9:12:15,且周长为72cm,则它的面积为 cm2.三.解答题19.解方程:=20.(1)已知a、b为实数,且+(1﹣b)=0,求a2017﹣b2018的值;(2)若x满足2(x2﹣2)3﹣16=0,求x的值.21.已知x=﹣1,求x2+3x﹣1的值.22.如图,已知△ABC中,∠C=90°,AB的垂直平分线交BC于M,交AB于N,若AC=,MB=2MC,求AB的长.23.如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE\n于点E;(1)若B、C在DE的同侧(如图所示)且AD=CE.求证:AB⊥AC;(2)若B、C在DE的两侧(如图所示),其他条件不变,AB与AC仍垂直吗?若是请给出证明;若不是,请说明理由.24.如图,四边形ABCD中,AB=AD,∠BAD=90°,若AB=2,CD=4,BC=8,求四边形ABCD的面积.25.一项旧城区改造工程,如果由甲工程队单独做,需要60天可以完成;如果由甲乙两队合作12天后,剩下的工程由乙工程队单独做,还需20天才能完成.求乙工程队单独完成这项工程需要多少天?参考答案一.选择题1.【解答】解:A、﹣3是整式;B、﹣a﹣b是多项式,属于整式;\nC、是分式;D、﹣4a3b是单项式,属于整式;故选:C.2.【解答】解:∵分式的值为零,∴|m|﹣1=0,m﹣1≠0,解得:m=﹣1.故选:B.3.【解答】解:∵a﹣1=20172+20182,∴a=20172+20182+1,∴2a﹣3=2(20172+20182+1)﹣3=2×20172+2×20182﹣1=2×20172+2017+2×20182﹣2018=2017×(2×2017+1)+2018×(2×2018﹣1)=2017×4035+2018×4035=4035×(2017+2018)=4035×4035=40352,∴=4035,故选:C.4.【解答】解:在所列8个数中,无理数有,0.2020020002…(每两个2之间0的个数逐次增加1个),﹣这3个数,故选:A.5.【解答】解:∵有意义,∴x满足条件是:x+3≥0,且x﹣1≠0,解得:x≥﹣3且x≠1.故选:A.\n6.【解答】解:A、不是最简二次根式,错误;B、不是最简二次根式,错误;C、不是最简二次根式,错误;D、是最简二次根式,正确;故选:D.7.【解答】解:∵点D为AB边中点,DE⊥AB,∴DE垂直平分AB,∴AE=BE,∴∠ABE=∠A=15°,∴∠BEC=∠A+∠ABE=30°,∵∠C=90°,∴BE=AE=2BC=2,CE=BC=,∴AC=AE+CE=2+,故选:C.8.【解答】解:作EH⊥BC于H,∵BE平分∠ABC,CD是AB边上的高线,EH⊥BC,∴EH=DE=3,∴△BCE的面积=×BC×EH=9,故选:C.9.【解答】解:延长AP交BC于E,\n∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,在△ABP和△EBP中,,∴△ABP≌△EBP(ASA),∴AP=PE,∴S△ABP=S△EBP,S△ACP=S△ECP,∴S△PBC=S△ABC=×12=6,故选:C.10.【解答】解:在Rt△ABC中,AB===5,△ABC的面积=×AB×CD=×AC×BC,即×5×CD=×4×3,解得,CD=,故选:B.11.【解答】解:∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,∴∠BCD=∠A.∵CE平分∠ACD,∴∠ACE=∠DCE.又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE,∴∠BEC=∠BCE,∴BC=BE.故选:C.12.【解答】解:原式=(+)÷=•\n=,故选:B.二.填空题13.【解答】解:分式与的最简公分母是6a3b4c,故答案为:6a3b4c.14.【解答】解:|1﹣|=﹣1,1﹣的相反数是:﹣(1﹣)=﹣1.故答案为:﹣1,﹣1.15.【解答】解:∵OA=1,OC=3,∴OB==,故点P表示的数为,故答案为:.16.【解答】解:∵a>0,∴==2a,故答案为:2a.17.【解答】解:∵3,4,a和5,b,13是两组勾股数,∴a=5,b=12,∴a+b=17,故答案为:17.18.【解答】解:设三边长为9xcm,12xcm,15xcm,∵(9x)2+(12x)2=(15x)2,∴AC2+BC2=AB2,∴∠C=90°,∵周长为72cm,∴9x+12x+15x=72,\n解得:x=2,∴9x=18,12x=24,∴它的面积为:×18×24=216(cm2),故答案为:216.三.解答题19.【解答】解:方程两边都乘以(1+x)(1﹣x),得:6=1+x,解得:x=5,检验:当x=5时,(1+x)(1﹣x)=﹣24≠0,所以分式方程的解为x=﹣5.20.【解答】解:(1)∵a,b为实数,且+(1﹣b)=0,∴1+a=0,1﹣b=0,解得a=﹣1,b=1,∴a2017﹣b2018=(﹣1)2017﹣12018=(﹣1)﹣1=﹣2;(2)2(x2﹣2)3﹣16=0,2(x2﹣2)3=16,(x2﹣2)3=8,x2﹣2=2,x2=4,x=±2.21.【解答】解:∵x=﹣1,∴x2+3x﹣1\n==2﹣2+1+3﹣3﹣1=﹣1+.22.【解答】解:如图,连接MA,∵M在线段AB的垂直平分线上,∴MA=MB=2MC,∵∠C=90°,∴AC2+CM2=MA2,即3+MC2=4MC2,解得MC=1,∴MB=2MC=2,∴BC=3,在Rt△ABC中,由勾股定理可得AB===2,即AB的长为2.23.【解答】(1)证明:∵BD⊥DE,CE⊥DE,∴∠ADB=∠AEC=90°,在Rt△ABD和Rt△ACE中,∵,∴Rt△ABD≌Rt△CAE.∴∠DAB=∠ECA,∠DBA=∠ACE.∵∠DAB+∠DBA=90°,∠EAC+∠ACE=90°,∴∠BAD+∠CAE=90°.∠BAC=180°﹣(∠BAD+∠CAE)=90°.∴AB⊥AC.\n(2)AB⊥AC.理由如下:同(1)一样可证得Rt△ABD≌Rt△ACE.∴∠DAB=∠ECA,∠DBA=∠EAC,∵∠CAE+∠ECA=90°,∴∠CAE+∠BAD=90°,即∠BAC=90°,∴AB⊥AC.24.【解答】解:在Rt△ABD中,AB=AD=2,∠BAD=90°,∴BD==4,∵CD=4,BC=8,∴BC2=BD2+CD2,∴∠BDC=90°,∴S四边形ABCD=S△ABD+S△DCB=×2×2+×4×4=4+8.25.【解答】解:设乙工程队单独完成这项工程需要x天,根据题意,得:(+)×12+=1,解得:x=40,经检验:x=40是原分式方程的解且符合题意,答:乙工程队单独完成这项工程需要40天.2022年秋八年级上册期末考试模拟题(四)一、选择题(本大题共10小题,共40分)\n1.点关于y轴对称的点的坐标是()A.(1,2)B.(-1,2)C.(-1,-2)D.(-2,1)2.有一个角是的等腰三角形,其它两个角的度数是()A.36°,108°B.36°,72°C.72°,72°D.36°,108°或72°,°72°3.点P在x轴的下方,且距离x轴3个单位长度,距离y轴4个单位长度,则点P的坐标为()A.(4,-3)B.(3,-4)C.(-3,-4)或(3,-4)D.(-4,-3)或(4,-3)4.若三条线段中,,为奇数,那么由a、b、c为边组成的三角形共有()A.1个B.3个C.无数多个D.无法确定5.在同一直角坐标系中,若直线与直线平行,则()A.,B.,C.,D.,6.当,时,函数的图象大致是()A.B.C.D.7.有以下四个命题:其中正确的个数为()(1)两条对角线互相平分的四边形是平行四边形;(2)两条对角线相等的四边形是矩形;(3)两条对角线互相垂直的平行四边形是菱形;(4)有一组邻边相等且有一个角是直角的四边形是正方形;A.1B.2C.3D.4第8题图8.如图,OP是∠的平分线,点P到OA的距离为3,点N是OB上的任意一点,则线段PN的取值范围为()\nA.B.C.D.9.如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在处,折痕为EF,若,,则△和的周长之和为()A.3B.4C.6D.810.有下列四个命题:①相等的角是对顶角;②同位角相等;第9题图③若一个角的两边与另一个角的两边互相平行,则这两个角一定相等;④从直线外一点到这条直线的垂线段,叫做点到直线的距离其中是真命题的个数有()A.0个B.1个C.2个D.3个二、填空题(本大题共6小题,共18分)11.如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是(-2,3),嘴唇C点的坐标为(-1,1),则此“QQ”笑脸右眼B的坐标_______________.12.如图,在平面直角坐标系xOy中,△由△绕点P旋转得到,则点P的坐标为_______________.第12题图13.已知函数是正比例函数,则_________14.如图,,请补充一个条件:_________________使△≌△\n(填其中一种即可)第15题图第14题图12.已知:如图,,,,若,则的度数为_____________________.13.如图,已知OC平分,,若,则CD的长等于____________.三、计算题(本大题共5小题,共30分)17.在直角坐标平面内,已点(3,0)、(-5,3),将点A向左平移6个单位到达C点,将点B向下平移6个单位到达D点.(1)写出C点、D点的坐标:C__________,D____________;(2)把这些点按顺次连接起来,这个图形的面积是__________.18.已知点关于x轴的对称点在第一象限,求a的取值范围.\n19.如图是屋架设计图的一部分,其中,点D是斜梁AB的中点,BC、DE垂直于横梁,,则立柱,要多长?20.我国西南五省市的部分地区发生严重旱灾,为鼓励节约用水,某市自来水公司采取分段收费标准,右图反映的是每月收取水费元与用水量吨之间的函数关系.(1)小明家五月份用水8吨,应交水费______元;(2)按上述分段收费标准,小明家三、四月份分别交水费26元和18元,问四月份比三月份节约用水多少吨?\n21.设一次函数的图象经过(1,3)、(0,-2)两点,求此函数的解析式.四、解答题(本大题共3小题,共32分)22.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书\n店,买到书后继续去学校以下是他本次上学所用的时间与路程的关系示意图(10分).根据图中提供的信息回答下列问题:(1)小明家到学校的路程是________米(2)小明在书店停留了___________分钟.(3)本次上学途中,小明一共行驶了________米,一共用了______分钟.(4)在整个上学的途中_________(哪个时间段)小明骑车速度最快,最快的速度是___________________米/分.21.已知是关于的一次函数,且当时,;当时,.(10分)(1)求这个一次函数的表达式;(2)求当时,函数的值;(3)求当时,自变量的值;(4)当时,自变量的取值范围.22.种植草莓大户张华现有22吨草莓等待出售,有两种销售渠道,一是运往省城直接批发给零售商,二是在本地市场零售,受客观因素影响,张华每天只能采用一种销售渠道,而且草莓必须在10天内售出(含10天)经过调查分析,这两种销售渠道每天销量及每吨所获纯利润见右表:(12分)销售渠道每日销量(吨)每吨所获纯利润(元)\n省城批发41200本地零售12000(1)若一部分草莓运往省城批发给零售商,其余在本地市场零售,请写出销售22吨草莓所获纯利润(元)与运往省城直接批发零售商的草莓量(吨)之间的函数关系式;(2)怎样安排这22吨草莓的销售渠道,才使张华所获纯利润最大?并求出最大纯利润.参考答案1.C2.D3.D4.B5.A6.D7.B8.C9.C10.A11. 12. 13.2 14. 15. 16.6cm 17.;;18 18.解:依题意得p点在第四象限,,解得:,即a的取值范围是. 19.解:,\n,、DE垂直于横梁AC,,又D是AB的中点,,答:立柱BC要要2m. 20. 解:根据图象可知,10吨以内每吨水应缴元所以元.解法一:由图可得用水10吨内每吨2元,10吨以上每吨元三月份交水费26元元所以用水:吨四月份交水费18元元,所以用水:吨四月份比三月份节约用水:吨解法二:由图可得10吨内每吨2元,当时,知当时,可设y与x的关系为:由图可知,当时,时,可解得与x之间的函数关系式为:,当时,知,有,解得,四月份比三月份节约用水:吨.直接根据图象先求得10吨以内每吨水应缴元,再求小明家的水费;根据图象求得10吨以上每吨3元,3月份交水费26元元,故水费按照超过10吨,每吨3元计算;四月份交水费18元元,故水费按照每吨2元计算,分别计算用水量\n做差即可求出节约的水量.主要考查了一次函数的实际应用和读图的基本能力解题的关键是能根据函数图象得到函数类型,并根据函数图象上点的实际意义求解.21.解:把、代入得,解得,所以此函数解析式为. 22.1500;4;2700;14;12分钟至14分钟;450 23..解:设一次函数的表达式为由题意,得,解得.所以,该一次函数解析式为:;当时,;当时,,解得.当时,,解得 24.解:由题意可得,,即销售22吨草莓所获纯利润元与运往省城直接批发零售商的草莓量吨之间的函数关系式是;草莓必须在10天内售出含10天,,解得,,\n,在函数中,y随x的增大而减小,当时,y取得最大值,此时,,即用4天时间运往省城批发,6天在本地零售,可以使张华所获纯利润最大,最大利润为31200元. 当时,,解得2022年秋八年级上册期末考试模拟题(五)一、选择题(每小题3分,共10小题,满分30分.请把表示正确答案的字母填入下表中对应的题号下.)1.(3分)下列代数式①,②,③,④中,分式有()A.1个B.2个C.3个D.4个2.(3分)根据分式的基本性质填空:=,括号内应填()A.x2﹣3xB.x3﹣3C.x2﹣3D.x4﹣3x3.(3分)下列计算正确的是()A.30=0B.3﹣2=﹣6C.3﹣2=﹣D.3﹣2=4.(3分)若代数式有意义,则x必须满足条件()A.x≥﹣1B.x≠﹣1C.x≥1D.x≤﹣15.(3分)已知一个等腰三角形的两边长分别是5cm与6cm,则这个等腰三角形的周长为()A.16cmB.17cmC.16cm或17cmD.无法确定6.(3分)下列命题是真命题的是()A.如果a是整数,那么a是有理数B.内错角相等C.任何实数的绝对值都是正数D.两边一角对应相等的两个三角形全等7.(3分)不等式组的解集在数轴上表示如图所示,则该不等式组可能为()\nA.B.C.D.8.(3分)(﹣4)2的平方根是()A.4B.±4C.2D.±29.(3分)已知a,b均为有理数,且a+b=(2﹣)2,则a、b的值为()A.a=4,b=3B.a=4,b=4C.a=7,b=﹣4D.a=7,b=410.(3分)方程的解是x等于()A.2B.﹣2C.±2D.无解二、填空题(每小题3分,共8小题,满分24分)11.(3分)科学实验发现有一种新型可入肺颗粒物的直径约为2.5μm(1μm=0.000001m),用科学记数法表示这种颗粒物的直径约为m.12.(3分)在实数范围内分解因式:x2﹣3=.13.(3分)实数﹣4的绝对值等于.14.(3分)如图,在△BCD中,∠C=30°,∠D=40°,点A为CB的延长线上一点,BE为∠ABD的角平分线,则∠ABE=°.15.(3分)如图,已知AD=BC,则再添加一个条件(只填一种),可证出△ABC≌△BAD.16.(3分)计算:()2015()2016=.17.(3分)巳知等腰三角形一底角为30°,则这个等腰三角形顶角的大小是度.18.(3分)如图,已知在△ABC中,BC=10cm,AB的垂直平分线EF交BC与点F,AC的垂直平分线MN交BC于点N,则△AFN的周长为cm.三、解答题(19题每小题8分,20题6分,满分14分)19.(8分)①化简:\n②计算:.20.(6分)求当x取何值时,代数式﹣的值不小于1?四、分析与说理(每小题8分,共2小题,满分16分)21.(8分)已知:如图所示,在△ABC中,∠ABC=∠ACB,BD⊥AC,垂足为点D,CE⊥AB,垂足为点E.求证:BD=CE.22.(8分)已知:如图所示,点D、E分别在等边△ABC的边BC、AC上,且AE=CD,AD与BE相交于点F.(1)求证:△ABE≌△CAD;(2)求∠BFD的度数.\n五、实践与应用(每小题8分,共2小题,满分16分)23.(8分)娄底到长沙的距离约为120km,小刘开着小轿车,小张开着大货车,都从娄底去长沙,小刘比小张晚出发15分钟,最后两车同时到达长沙,已知小轿车的速度是大货车速度的1.2倍,求小轿车和大货车的速度各是多少?(列方程解答)24.(8分)某校组织开展了“娄底是我家,建设娄底靠大家”的环保知识竞赛,共25道竞赛题,选对一题得4分,不选或选错每题扣2分,大赛组委会规定总得分不低于80分获奖,那么至少应选对多少道题才能获奖?(列不等式解答)六、阅读与探究(每小题10分,共2小题,满分20分)25.(10分)阅读下列材料,并解决问题:①已知方程x2+3x+2=0的两根分别为x1=﹣1,x2=﹣2,计算:x1+x2=,x1•x2=②已知方程x2﹣3x﹣4=0的两根分别为x1=4,x2=﹣1,计算:x1+x2=,x1•x2=③已知关于x的方程x2+px+q=0有两根分别记作x1,x2,且x1=,x2=\n,请通过计算x1+x2及x1•x2,探究出它们与p、q的关系.26.(10分)在长方形ABCD中,AD=2AB,E是AD的中点,一块三角板的直角顶点与点E重合,将三角板绕点E按顺时针方向旋转,当三角板的两直角边分别与AB、BC分别相交于点M,N时,观察或测量BM与CN的长度,你能得到什么结论?并证明你的结论.参考答案:一、选择题(每小题3分,共10小题,满分30分.请把表示正确答案的字母填入下表中对应的题号下.)1.(3分)下列代数式①,②,③,④中,分式有()A.1个B.2个C.3个D.4个【分析】根据分式的定义看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式,即可得出答案.【解答】解:①是分式;②分母中不含字母,不是分式;③分母中不含字母,不是分式;④分母中含有字母是分式.故选:B.2.(3分)根据分式的基本性质填空:=,括号内应填()A.x2﹣3xB.x3﹣3C.x2﹣3D.x4﹣3x【分析】把分式的分母与分子同时除以x即可得出结论.\n【解答】解:∵分式的分母与分子同时除以x得,=.∴括号内应填x2﹣3.故选C.3.(3分)下列计算正确的是()A.30=0B.3﹣2=﹣6C.3﹣2=﹣D.3﹣2=【分析】根据零指数幂:a0=1(a≠0),负整数指数幂:a﹣p=(a≠0,p为正整数)进行计算.【解答】解:30=1,3﹣2=,故选:D.4.(3分)若代数式有意义,则x必须满足条件()A.x≥﹣1B.x≠﹣1C.x≥1D.x≤﹣1【分析】根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可.【解答】解:由题意得,x+1≥0,解得,x≥﹣1,故选:A.5.(3分)已知一个等腰三角形的两边长分别是5cm与6cm,则这个等腰三角形的周长为()A.16cmB.17cmC.16cm或17cmD.无法确定【分析】分腰为6cm和腰为5cm两种情况,再求其周长.【解答】解:当腰为6cm时,则三角形的三边长分别为6cm、6cm、5cm,满足三角形的三边关系,周长为17cm;当腰为5时,则三角形的三边长分别为5cm、5cm、6cm,满足三角形的三边关系,周长为16cm;综上可知,等腰三角形的周长为16cm或17cm.故选C.6.(3分)下列命题是真命题的是()A.如果a是整数,那么a是有理数B.内错角相等C.任何实数的绝对值都是正数D.两边一角对应相等的两个三角形全等【分析】根据有理数的分类对A进行判断;根据平行线的性质对B进行判断;根据绝对值的意义对C进行判断;根据全等三角形的判定方法对D进行判断.【解答】解:A、如果a是整数,那么a是有理数,所以A选项正确;B、两直线平行,内错角相等,所以B选项错误;C、任何实数的绝对值都是非负数,所以C选项错误;\nD、两边和它们的夹角对应相等的两个三角形,所以D选项错误.故选A.7.(3分)不等式组的解集在数轴上表示如图所示,则该不等式组可能为()A.B.C.D.【分析】写出图中表示的两个不等式的解集,这两个式子就是不等式.这两个式子组成的不等式组就满足条件.【解答】解:由图示可看出,从﹣1出发向右画出的线且﹣1处是空心圆,表示x>﹣1;从2出发向左画出的线且2处是实心圆,表示x≤2,所以这个不等式组为.故选A.8.(3分)(﹣4)2的平方根是()A.4B.±4C.2D.±2【分析】根据平方根的概念,推出16的平方根为±4.【解答】解:(﹣4)2的平方根是±4,故选B9.(3分)已知a,b均为有理数,且a+b=(2﹣)2,则a、b的值为()A.a=4,b=3B.a=4,b=4C.a=7,b=﹣4D.a=7,b=4【分析】利用完全平方公式去括号,进而得出a,b的值,进而得出答案.【解答】解:∵(2﹣)2=a+b,∴4+3﹣4=a+b,∴a=7,b=﹣4,故选C10.(3分)方程的解是x等于()A.2B.﹣2C.±2D.无解【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x+2=4,解得:x=2,经检验x=2是增根,分式方程无解.故选D二、填空题(每小题3分,共8小题,满分24分)\n11.(3分)科学实验发现有一种新型可入肺颗粒物的直径约为2.5μm(1μm=0.000001m),用科学记数法表示这种颗粒物的直径约为2.5×10﹣6m.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:2.5μm=2.5×0.000001m=2.5×10﹣6m,故答案为:2.5×10﹣6.12.(3分)在实数范围内分解因式:x2﹣3=(x+)(x﹣).【分析】把3写成的平方,然后再利用平方差公式进行分解因式.【解答】解:x2﹣3=x2﹣()2=(x+)(x﹣).13.(3分)实数﹣4的绝对值等于4﹣.【分析】根据差的绝对值是大数减小数,可得答案.【解答】解:﹣4的绝对值等于4﹣,故答案为:4﹣.14.(3分)如图,在△BCD中,∠C=30°,∠D=40°,点A为CB的延长线上一点,BE为∠ABD的角平分线,则∠ABE=35°.【分析】由外角性质可得∠ABD的度数,再利用角平分线的定义可得结果.【解答】解:∵∠C=30°,∠D=40°,∴∠ABD=∠C+∠D=30°+40°=70°,∵BE为∠ABD的角平分线,∴=35°,故答案为:35.15.(3分)如图,已知AD=BC,则再添加一个条件AC=BD(只填一种),可证出△ABC≌△BAD.【分析】本题是开放题,要使△ABC≌△BAD,已知AD=BC,AB是公共边,故添加AC=BD,即可根据SSS判定两三角形全等.【解答】解:添加AC=BD.∵AD=BC,AB=AB,AC=BD∴△ABC≌△BAD.(SSS)故答案为AC=BD.16.(3分)计算:()2015()2016=2﹣.\n【分析】直接利用积的乘方运算法则将原式变形,进而求出答案.【解答】解:()2015()2016=[()2015()2015](﹣2)=[()×()]2015(﹣2)=2﹣.故答案为:2﹣.17.(3分)巳知等腰三角形一底角为30°,则这个等腰三角形顶角的大小是120度.【分析】由已知给出等腰三角形一底角为30°,根据等腰三角形的性质及三角形的内角和不难求得等腰三角形的顶角.【解答】解:∵等腰三角形的两个底角相等∴顶角度数是:180°﹣30°﹣30°=120°.故填120.18.(3分)如图,已知在△ABC中,BC=10cm,AB的垂直平分线EF交BC与点F,AC的垂直平分线MN交BC于点N,则△AFN的周长为10cm.【分析】根据垂直平分线性质得AF=BF,AN=CN,所以△ANF周长=BC.【解答】解:∵AB、AC的垂直平分线分别交BC于F,N,∴AF=BF,AN=CN,∴C△AFN=AF+FN+AN=BF+FN+CN=BC=10.故答案为:10.三、解答题(19题每小题8分,20题6分,满分14分)19.(8分)①化简:②计算:.【分析】①先通分化为同分母,再进行同分母的加法运算,然后约分即可;②先把各二次根式化为最简二次根式,然后合并即可.【解答】解:①原式=+==;②原式=2++﹣3=2﹣.\n20.(6分)求当x取何值时,代数式﹣的值不小于1?【分析】根据题意得出不等式,求出不等式的解集即可求得x的取值范围.【解答】解:根据题意得:﹣≥1,3(3x﹣5)﹣7(x+4)≥21,9x﹣15﹣7x﹣28≥21,9x﹣7x≥21+28+15,2x≥64,x≥32.故当x≥32时,代数式﹣的值不小于1.四、分析与说理(每小题8分,共2小题,满分16分)21.(8分)已知:如图所示,在△ABC中,∠ABC=∠ACB,BD⊥AC,垂足为点D,CE⊥AB,垂足为点E.求证:BD=CE.【分析】利用垂直的定义得到∠BEC=∠BDC=90°,然后根据三角形全等的判定方法可得到△BCD≌△BCE,则根据全等的性质即可得到BD=CE.【解答】解:∵BD⊥AC,CE⊥AB,∴∠BEC=∠BDC=90°,在△BCD和△CDE中,,∴△BDC≌△CDE(AAS),∴BD=CE.22.(8分)已知:如图所示,点D、E分别在等边△ABC的边BC、AC上,且AE=CD,AD与BE相交于点F.(1)求证:△ABE≌△CAD;(2)求∠BFD的度数.\n【分析】(1)通过SAS可得△ABE≌△ACD.(2)根据全等三角形的性质推出∠ABE=∠CAD,再通过角之间的转化即可求解∠BFD的度数.【解答】解:(1)∵△ABC为等边三角形,∴AB=AC,AE=CD,∠BAE=∠C=60°,在△ABE和△ACD中,,∴△ABE≌△CAD(SAS),∴AD=BE.(2)∵△ABE≌△CAD,∴∠ABE=∠CAD,∴∠BFD=∠ABE+∠BAD=∠CAD+∠BAD=∠BAC=60°.五、实践与应用(每小题8分,共2小题,满分16分)23.(8分)娄底到长沙的距离约为120km,小刘开着小轿车,小张开着大货车,都从娄底去长沙,小刘比小张晚出发15分钟,最后两车同时到达长沙,已知小轿车的速度是大货车速度的1.2倍,求小轿车和大货车的速度各是多少?(列方程解答)【分析】首先设大货车的速度为xkm/时,则小轿车的速度为1.2xkm/时,根据题意可得等量关系:大货车行驶时间﹣小轿车行驶时间=小时,根据等量关系列出方程,再解即可.【解答】解:设大货车的速度为xkm/时,由题意得:﹣=,解得:x=80,经检验:x=80是分式方程的解,1.2x=1.2×80=96,答:大货车的速度为80km/时,小轿车的速度为96km/时.24.(8分)某校组织开展了“娄底是我家,建设娄底靠大家”的环保知识竞赛,共25道竞赛题,选对一题得4分,不选或选错每题扣2分,大赛组委会规定总得分不低于80分获奖,那么至少应选对多少道题才能获奖?(列不等式解答)【分析】读懂题列出不等式关系式即可求解,关系式为:得奖的分数≥80.【解答】解:设做对x道.根据题意列出不等式:4x﹣2×(25﹣x)≥80,解得:x≥,∵=21,∴x最小取22.答:至少应选对22道题才能获奖.六、阅读与探究(每小题10分,共2小题,满分20分)\n25.(10分)阅读下列材料,并解决问题:①已知方程x2+3x+2=0的两根分别为x1=﹣1,x2=﹣2,计算:x1+x2=﹣3,x1•x2=2②已知方程x2﹣3x﹣4=0的两根分别为x1=4,x2=﹣1,计算:x1+x2=3,x1•x2=﹣4③已知关于x的方程x2+px+q=0有两根分别记作x1,x2,且x1=,x2=,请通过计算x1+x2及x1•x2,探究出它们与p、q的关系.【分析】根据题目中所给的方程的两根,分别求出x1+x2,x1•x2,然后可得出x1+x2=﹣p,x1x2=q.【解答】解:①∵x1=﹣1,x2=﹣2,∴x1+x2=﹣3,x1•x2=2;②∵x1=4,x2=﹣1,∴x1+x2=3,x1•x2=﹣4;③∵x1=,x2=,∴x1+x2=+=﹣p,x1x2=•=q,即x1+x2=﹣p,x1x2=q.故答案为:﹣3,2;3,﹣4.26.(10分)在长方形ABCD中,AD=2AB,E是AD的中点,一块三角板的直角顶点与点E重合,将三角板绕点E按顺时针方向旋转,当三角板的两直角边分别与AB、BC分别相交于点M,N时,观察或测量BM与CN的长度,你能得到什么结论?并证明你的结论.【分析】作辅助线EF⊥BC于点F,然后证明Rt△AME≌Rt△FNE,从而求出AM=FN,所以BM与CN的长度相等.【解答】解:BM与与CN的长度相等.证明:在矩形ABCD中,AD=2AB,E是AD的中点,如图,作EF⊥BC于点F,则有AB=AE=EF=FC,∵∠AEM+∠DEN=90°,∠FEN+∠DEN=90°,\n∴∠AEM=∠FEN,在Rt△AME和Rt△FNE中,,∴Rt△AME≌Rt△FNE,∴AM=FN,∴MB=CN.